Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Đặt
Yều cẩu bào toán trở thành: Tìm m để bất phương trình nghiệm đúng với mọi
Từ đồ thị đã cho, ta suy ra đồ thị của hàm số
Từ đó ta có kết quả thỏa mãn yêu cầu bài toán là
Đáp án B
(1) là phương trình hoành độ giao điểm của đồ thị f'(t) và đường thẳng d : y = -t (hình vẽ)
Dựa vào đồ thị của f'(t) và đường thẳng y =-t ta có
\(\Leftrightarrow2^{2x}-1+m.2^x+m\le0\\ \Leftrightarrow\left(2^x-1\right)\left(2^x+1\right)+m\left(2^x+1\right)\le0\\ \Leftrightarrow\left(2^x+1\right)\left(2^x-1+m\right)\le0\)
Vì \(2^x+1>0\forall x\) nên ta có
\(2^x-1+m\le0\Leftrightarrow2^x\le1-m\)
Vẽ đồ thị hàm số \(f\left(x\right)=2^x\),
ta thấy bất phương trình có nghiệm khi và chỉ khi đường thẳng y=1-m nằm trên trục Ox
\(\Rightarrow1-m>0\Leftrightarrow m< 1\) (không có dấu "=")