Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.\)
\(2x^3-6x\)
\(\Leftrightarrow2x^3-6x=0\)
\(\Leftrightarrow2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{3}\end{cases}}\)
\(\frac{x}{3}=\frac{y}{4}=>\frac{3x}{9}=\frac{2y}{8}=\frac{3x-2y}{9-8}=\frac{5}{1}=5\)
=> x = 15 ; y=20
1. 2x = 3y-2
2x+2x = 3y
4x = 3y
=> \(\frac{x}{3}=\frac{y}{y}\Rightarrow\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> \(\frac{x}{3}=2\Rightarrow x=6\)
=> \(\frac{y}{4}=2\Rightarrow y=8\)
1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)
mà x+y-z=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)
=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)
2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)
mà 3x+2y=47-42=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)
=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)
a) Ta có: \(M=x^2y+xy^2-5x^2y^2+x^3-2x^2y+6xy^2\)
\(=\left(x^2y-2x^2y\right)+\left(xy^2+6xy^2\right)-5x^2y^2+x^3\)
\(=x^3-x^2y+7xy^2-5x^2y^2\)
Bậc là 4
Ta có: \(N=3x^3+xy+y^2-x^2y^2-2-2xy+7y^2\)
\(=3x^3+\left(xy-2xy\right)+\left(y^2+7y^2\right)-x^2y^2-2\)
\(=3x^2+8y^2-xy-x^2y^2-2\)
Bậc là 4
Mình sẽ trình bày rõ hơn ở (2) nha
Ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\) = \(\frac{2-3}{\left(x+1\right)-\left(2y-3\right)}=\frac{-1}{x+1-2y+3}=\frac{-1}{x-2y+4}\)
(Vì trước ngoặc của 2y - 3 là dấu trừ nên khi phá ngoặc thì nó sẽ trở thành dấu cộng.Đây là quy tắc phá ngoặc mà bạn đã được học ở lớp 6 đó)
Ahaha, mình cũng học rồi mà quên mất, cảm giác hiểu ra cái này khó diễn tả thật cậu ạ. Vui chả nói nên lời :))
À quên cảm ơn cậu nhé :^)
Ta có:
\(x^2y^3+3x^2y^3+5x^2y^3+...+\left(2k-1\right)x^2y^3=100x^2y^3\)
\(\Rightarrow\left[1+3+5+...+\left(2k-1\right)\right]x^2y^3=100x^2y^3\)
\(\Rightarrow1+3+5+...+\left(2k-1\right)=100\)
Từ 1 đến 2k-1 có số lượng số là: (2k-1-1):2+1=(2k-2):2+1=k-1+1=k
Áp dụng công thức tính tổng dãy số cách đều ta có:
\(\Rightarrow\dfrac{\left(2k-1+1\right).k}{2}=100\)
\(\Rightarrow\dfrac{2k^2}{2}=100\)
\(\Rightarrow k^2=100\Rightarrow k=\pm10\)( chọn vì thoả mãn điều kiện \(k\in N\))
Vậy \(k=\pm10\)
Chúc bạn học tốt!!!
\(x^2y^3+3x^2y^3+5x^2y^3+...+\left(2k-1\right)x^2y^3=100x^2y^3\)
\(\Leftrightarrow1+3+5+...+\left(2k-1\right)=100\)
Ta có: \(100=\dfrac{\left(1+2k-1\right).\left(\dfrac{2k-1-1}{2}+1\right)}{2}\)
\(\Leftrightarrow200=2k.k\)
\(\Leftrightarrow k=\pm10\)
Mà k > 0 => \(k=10\)