Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau bạn chú ghi đầy đủ đề. Tìm $k$ để $f(x)$ chia hết cho........ nhé.
Lời giải:
a. Áp dụng định lý Bê-du về phép chia đa thức, để $f(x)$ chia hết cho $g(x)=x-2$ thì:
$f(2)=0$
$\Leftrightarrow 2^3+2.2^2-k+8=0\Leftrightarrow k=8$
b. Áp dụng định lý Bê-du về phép chia đa thức, để $f(x)$ chia hết cho $g(x)=x+4$ thì:
$f(-4)=0$
$\Leftrightarrow (-4)^3+2(-4)^2-k+8=0$
$\Leftrightarrow -24-k=0$
$\Leftrightarrow k=-24$
a: f(x) chia hết cho g(x)
=>2x^2+4x-x-2+a+2 chia hết cho x+2
=>a+2=0
=>a=-2
b: f(x) chia hết cho g(x)
=>3x^2+6x+(m-6)x+2m-12-2m+7 chia hết cho x+2
=>-2m+7=0
=>m=7/2
hôm nay bọn mik vừa hok về chưa thấm đâu vô đâu nên kg giúp đc xin lỗi nhe!
1/ B chia đa thức f(x) cho g(x) như bình thường, dư 3
Để chia hết, số dư phải bằng 0
hay x- 2 thuộc ước của 3 bằng \(\pm1,\pm3\)
Ta có bảng gt:
.....
Vậy..........
a: \(\Leftrightarrow x^3-x^2-x^2+x+3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{-1;1;3;-3\right\}\)
hay \(x\in\left\{0;2;4;-2\right\}\)