Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:
a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)
Số hạng chứa \(x^8\) có:
\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)
Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)
b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)
\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)
\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)
Số hạng chứa \(x^5\) có:
\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)
Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)
\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)
Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn
Vậy trong khai triển trên ko có số hạng chứa \(x^8\)
b/ \(\left(1-x^2+x^4\right)^{16}\)
\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)
\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)
Hệ số của số hạng chứa \(x^{16}\):
\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)
c/ SHTQ của khai triển \(\left(1-2x\right)^5\) là \(C_5^k\left(-2\right)^kx^k\)
Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)
SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)
Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)
Xét khai triển : (x + 1)n
Tk+1 = \(C_n^k\). xk . 110 - k = \(C_n^k\) . xk.
+) Cụ thể với khai triển (x + 1)10. Số hạng chứa x8 ứng với k = 8
Số hạng x8 trong khai triển này là \(C_{10}^8\) . x8 = 45x8
+) Cụ thể với khai triển (x + 1)11. Số hạng chứa x8 ứng với k = 8
Số hạng x8 trong khai triển này là \(C_{11}^8\) . x8 = 165x8
+) Cụ thể với khai triển (x + 1)12. Số hạng chứa x8 ứng với k = 8
Số hạng x8 trong khai triển này là \(C_{12}^8\) . x8 = 495x8
Vậy hệ số của x8 trong khai triển của đa thức trên là : 165 + 495 + 45 = 705a: \(y=\left(5x-10\right)^4\)
=>\(y'=4\cdot\left(5x-10\right)'\cdot\left(5x-10\right)^3\)
\(=4\cdot5\cdot\left(5x-10\right)^3=20\left(5x-10\right)^3\)
Đặt y'>0
=>\(20\left(5x-10\right)^3>0\)
=>\(\left(5x-10\right)^3>0\)
=>5x-10>0
=>x>2
Đặt y'<0
=>\(20\left(5x-10\right)^3< 0\)
=>\(\left(5x-10\right)^3< 0\)
=>5x-10<0
=>x<2
Vậy: hàm số đồng biến trên \(\left(2;+\infty\right)\)
Hàm số nghịch biến trên \(\left(-\infty;2\right)\)
c: \(y=\left(x^3-1\right)^3\)
=>\(y'=3\left(x^3-1\right)'\cdot\left(x^3-1\right)^2\)
\(=9x^2\left(x^3-1\right)^2>=0\forall x\)
=>Hàm số luôn đồng biến trên R
d: \(y=\left(x^2-1\right)\left(x+2\right)\)
=>\(y'=\left(x^2-1\right)'\left(x+2\right)+\left(x^2-1\right)\left(x+2\right)'\)
\(=2x\left(x+2\right)+x^2-1\)
\(=2x^2+4x+x^2-1=3x^2+4x-1\)
Đặt y'>0
=>\(3x^2+4x-1>0\)
=>\(\left[{}\begin{matrix}x< \dfrac{-2-\sqrt{7}}{3}\\x>\dfrac{-2+\sqrt{7}}{3}\end{matrix}\right.\)
Đặt y'<0
=>\(3x^2+4x-1< 0\)
=>\(\dfrac{-2-\sqrt{7}}{3}< x< \dfrac{-2+\sqrt{7}}{3}\)
Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;\dfrac{-2-\sqrt{7}}{3}\right);\left(\dfrac{-2+\sqrt{7}}{3};+\infty\right)\)
Hàm số nghịch biến trên khoảng \(\left(\dfrac{-2-\sqrt{7}}{3};\dfrac{-2+\sqrt{7}}{3}\right)\)
b: \(y=\left(-x-1\right)\left(x+2\right)^4\)
=>\(y'=\left(-x-1\right)'\left(x+2\right)^4+\left(-x-1\right)\left[\left(x+2\right)^4\right]'\)
\(=-\left(x+2\right)^4+\left(-x-1\right)\cdot4\left(x+2\right)'\left(x+2\right)^3\)
\(=-\left(x+2\right)^4+4\left(x+2\right)^3\cdot\left(-x-1\right)\)
\(=-\left(x+2\right)^3\left[\left(x+2\right)+4\left(x+1\right)\right]\)
\(=-\left(x+2\right)^2\cdot\left(x+2\right)\left(5x+6\right)\)
Đặt y'<0
=>\(-\left(x+2\right)^2\left(x+2\right)\left(5x+6\right)< 0\)
=>(x+2)(5x+6)>0
TH1: \(\left\{{}\begin{matrix}x+2>0\\5x+6>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>-2\\x>-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x>-\dfrac{6}{5}\)
TH2: \(\left\{{}\begin{matrix}x+2< 0\\5x+6< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -2\\x< -\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x< -2\)
Đặt y'>0
=>(x+2)(5x+6)<0
TH1: \(\left\{{}\begin{matrix}x+2>0\\5x+6< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>-2\\x< -\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow-2< x< -\dfrac{6}{5}\)
TH2: \(\left\{{}\begin{matrix}x+2< 0\\5x+6>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -2\\x>-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy: HSĐB trên các khoảng \(\left(-\infty;-2\right);\left(-\dfrac{6}{5};+\infty\right)\)
HSNB trên khoảng \(\left(-2;-\dfrac{6}{5}\right)\)
Xét \(x\ne1\)
\(\left(1+x+...+x^{10}\right)^{11}=a_0+a_1x+...+a_{110}x^{110}\)
\(\Leftrightarrow\left(x-1\right)^{11}\left(1+x+...+x^{10}\right)^{11}=\left(x-1\right)^{11}\left(a_1+a_1x+...+a_{110}x^{110}\right)\)
\(\Leftrightarrow\left(x^{11}-1\right)^{11}=\left(x-1\right)^{11}\left(a_0+a_1x+...+a_{110}x^{110}\right)\)
\(VP=\left(x-1\right)^{11}\left(a_0+a_1x+...\right)=\left(\sum\limits^{11}_{k=0}C_{11}^kx^k\left(-1\right)^{11-k}\right)\left(a_0+a_1x+...\right)\) (1)
Ta thấy tổng các hệ số của \(x^{11}\) trong khai triển (1) là:
\(C_{11}^0\left(-1\right)^{11}.a_{11}+C_{11}^1\left(-1\right)^{10}a_{10}+C_{11}^2\left(-1\right)^9a_9+...+C_{11}^{11}\left(-1\right)^0a_0\)
\(=-C_{11}^0a_{11}+C_{11}^1a_{10}-C_{11}^2a_9+...+C_{11}^{11}a_0=-T\)
\(VT=\sum\limits^{11}_{k=0}C_{11}^k\left(x^{11}\right)^k.\left(-1\right)^{11-k}\)
Hệ số của \(x^{11}\) trong khai triển trên là \(C_{11}^1\left(-1\right)^{10}=C_{11}^1=11\)
Mà \(VT=VP\Rightarrow-T=11\Rightarrow T=-11\)
Để tính giá trị của biểu thức S, chúng ta có thể sử dụng công thức khai triển nhị thức Newton. Công thức này cho phép chúng ta tính toán các hệ số a0, a1, a2,..., a11 trong biểu thức (1+x+x^2+...+x^10)^11.
Công thức khai triển nhị thức Newton: (a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)b^1 + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a^1b^(n-1) + C(n,n)a^0b^n
Trong đó, C(n,k) là tổ hợp chập k của n (n choose k), được tính bằng công thức C(n,k) = n! / (k!*(n-k)!).
Áp dụng công thức khai triển nhị thức Newton vào biểu thức (1+x+x^2+...+x^10)^11, ta có:
S = C(11,0)*a0 - C(11,1)*a1 + C(11,2)*a2 - C(11,3)*a3 + ... + C(11,10)*a10 - C(11,11)*a11
Bây giờ, để tính giá trị của S, chúng ta cần tính các hệ số a0, a1, a2,..., a11. Để làm điều này, chúng ta có thể sử dụng công thức C(n,k) để tính các hệ số từng phần tử trong biểu thức (1+x+x^2+...+x^10)^11.
Tuy nhiên, để viết bài giải ngắn nhất có thể, ta có thể sử dụng một số tính chất của tổ hợp chập để rút gọn công thức. Chẳng hạn, ta có các quy tắc sau:
C(n,k) = C(n,n-k) (đối xứng)C(n,0) = C(n,n) = 1C(n,1) = C(n,n-1) = nÁp dụng các quy tắc trên vào công thức của S, ta có:
S = a0 - 11a1 + 55a2 - 165a3 + ... + 330a10 - a11
Với công thức trên, ta chỉ cần tính 11 hệ số a0, a1, a2,..., a10, a11 và thực hiện các phép tính nhân và cộng trừ để tính giá trị của S.
Đầu tiên ta có \(\left(1+x\right)^{20}\) có SHTQ \(C_{20}^kx^k\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^{10}\) là \(C_{20}^{10}\) (1)
Ta cũng có khai triển:
\(\left(1+x\right)^{10}\left(x+1\right)^{10}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC^i_{10}x^{10+i-k}\)
Số hạng chứa \(x^{10}\Rightarrow10+i-k=10\Rightarrow i=k\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^{10}\) là:
\(\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^i=\sum\limits^{10}_{k=0}\left(C_{10}^k\right)^2=\left(C_{10}^0\right)^2+\left(C_{10}^1\right)^2+...+\left(C_{10}^{10}\right)^2\)
Mà từ (1) ta có hệ số của số hạng chứa \(x^{10}\) là \(C_{20}^{10}\Rightarrow S=C_{20}^{10}\)