K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

14 tháng 6 2021

giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp 

nên 2b+c-2c-a = 2b-a-c chia hết cho 3

lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3

tương tự ta có c-a và a-b chia hết cho 3

cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Lời giải:
$P=\frac{a^2b^2+b^2c^2+c^2a^2}{abc}$

Áp dụng BĐT AM-GM, dạng $(x+y+z)^2\geq 3(xy+yz+xz)$ ta có:

$(a^2b^2+b^2c^2+c^2a^2)^2\geq 3(a^2b^4c^2+a^4b^2c^2+a^2b^2c^4)$

$=3a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2$

$\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq \sqrt{3}abc$

$\Rightarrow P=\frac{a^2b^2+b^2c^2+c^2a^2}{abc}\geq \sqrt{3}$

Vậy $P_{\min}=\sqrt{3}$. Giá trị này đạt tại $a=b=c=\frac{1}{\sqrt{3}}$

5 tháng 4

Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
          =a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
           =b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.

 

7 tháng 9 2020

\(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\)

\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)=6c^2+2bc+3bc+b^2\)

\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)-6c^2-2bc-3bc=b^2\)

\(\Leftrightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=b^2\) ( 1 )

Dễ thấy \(a^2c^2+2ac-6c⋮c\) ( 2 )

Gọi d là ƯC của c và \(a^2c^2+2ac-6c-5b+1\) , ta có :

\(\orbr{\begin{cases}c⋮d\\a^2c^2+2ac-6c-5b+1⋮d\end{cases}}\Rightarrow c-a^2c^2+2ac-6c-5b+1⋮d\) ( 3 )

Từ ( 2 ) và ( 3 ) => 1 - 5b chia hết cho d

Đặt c = kd ; a2c2 + 2ac - 6c - 5b + 1 = td  ( \(k;t\in Z\))

\(\Rightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=kd.td=ktd^2\) ( 4 )

Từ ( 1 ) và ( 4 ) => b2 = ktd2

\(\Rightarrow b⋮d\Rightarrow5b⋮d\). Mà 1 - 5b chia hết cho d

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> Đpcm

7 tháng 9 2020

Sửa lại một tí

Chỗ ( 2 ) chỉnh dấu lại :)

( 3 ) \(c-a^2c^2-2ac+6c+5b-1⋮d\)

Từ ( 2 ) và ( 3 ) => 5b - 1 chia hết cho d

Từ ( 1 ) và ( 4 ) ... => 5b chia hết cho d

=> 1 chia hết cho d => d = 1

=> Đpcm