Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì c, d là 2 số nguyên liên tiếp nên \(d=c+1\)
Thay vào đẳng thức \(a-b=a^2c-b^2d\)ta được
\(a-b=a^2c-b^2\left(c+1\right)\)
\(\Leftrightarrow\left(a-b\right)\left[c\left(a+b\right)-1\right]=b^2\)
Dễ dàng chứng minh được \(\left(a-b,c\left(a+b\right)-1\right)=1\)
nên \(\left|a-b\right|\)là số chính phương
B1 :
Áp dụng bđt cosi ta có : a^2/b+c + b+c/4 >= \(2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\) = 2. a/2 = a
Tương tự b^2/c+a + c+a/4 >= b
c^2/a+b + a+b/4 >= c
=> VT + a+b+c/2 >= a+b+c
=> VT >= a+b+c/2 = VP
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
k mk nha
\(\frac{1}{3a+2b+c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\right)\) )cái này bn tự cm nha bằng hệ quả của bunhia
tương tự :\(\frac{1}{3b+2c+a}\le\frac{1}{36}\left(\frac{3}{b}+\frac{2}{c}+\frac{1}{a}\right)\)
\(\frac{1}{3c+2a+b}\le\frac{1}{36}\left(\frac{3}{c}+\frac{2}{a}+\frac{1}{b}\right)\)
Công tất cả các vế vs nhau:\(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)\)=1/36 x96=8/3
à còn phần mik dùng bunhia sao ra dc thế nè :\(\frac{1}{3a+2b+c}=\frac{1}{a+a+a+b+b+c}\)
\(=\frac{1}{36}\left(\frac{36}{a+a+a+b+b+c}\right)\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)\(=\frac{1}{36}\left(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\right)\)
Ta có: \(\frac{a}{2-a}\ge\frac{18a}{25}-\frac{1}{25}\Leftrightarrow25a\ge\left(18a-1\right)\left(2-a\right)\)
\(\Leftrightarrow-18a^2+37a-2-25a\le0\Leftrightarrow2\left(a-\frac{1}{3}\right)^2\ge0\)
Chứng minh tương tự rồi cộng lại ta được:
\(\frac{a}{2-a}+\frac{b}{2-b}+\frac{c}{2-c}\ge\frac{18}{25}\left(a+b+c\right)-\frac{3}{25}=\frac{3}{5}\)
Ta có đpcm
Dấu "=" xảy ra khi a=b=c=1/3
\(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)=6c^2+2bc+3bc+b^2\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)-6c^2-2bc-3bc=b^2\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=b^2\) ( 1 )
Dễ thấy \(a^2c^2+2ac-6c⋮c\) ( 2 )
Gọi d là ƯC của c và \(a^2c^2+2ac-6c-5b+1\) , ta có :
\(\orbr{\begin{cases}c⋮d\\a^2c^2+2ac-6c-5b+1⋮d\end{cases}}\Rightarrow c-a^2c^2+2ac-6c-5b+1⋮d\) ( 3 )
Từ ( 2 ) và ( 3 ) => 1 - 5b chia hết cho d
Đặt c = kd ; a2c2 + 2ac - 6c - 5b + 1 = td ( \(k;t\in Z\))
\(\Rightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=kd.td=ktd^2\) ( 4 )
Từ ( 1 ) và ( 4 ) => b2 = ktd2
\(\Rightarrow b⋮d\Rightarrow5b⋮d\). Mà 1 - 5b chia hết cho d
\(\Rightarrow1⋮d\Rightarrow d=1\)
=> Đpcm
Sửa lại một tí
Chỗ ( 2 ) chỉnh dấu lại :)
( 3 ) \(c-a^2c^2-2ac+6c+5b-1⋮d\)
Từ ( 2 ) và ( 3 ) => 5b - 1 chia hết cho d
Từ ( 1 ) và ( 4 ) ... => 5b chia hết cho d
=> 1 chia hết cho d => d = 1
=> Đpcm