Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\left(1\right)\)
Theo t/c dãy tỉ số=nhau:
\(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{x+y+x-y}{\frac{1}{35}+\frac{1}{210}}=\frac{2x}{\frac{1}{30}}=2x.30=60x\left(2\right)\)
Từ (1) và (2) suy ra \(60x=\frac{xy}{\frac{1}{12}}=>\frac{60x}{xy}=\frac{1}{12}=< \frac{60}{y}=\frac{1}{12}=>y=720\)
Thay y=720 vào (1),ta có: \(\frac{x+720}{\frac{1}{35}}=\frac{x-720}{\frac{1}{210}}=>\left(x+720\right).35=\left(x-720\right).210=>35x+25200=210x-151200\)
\(=>x=1008\)
Vậy x=2008;y=720
-Gọi hai số cần tìm là a,b
_Do tổng hiệu và tích ccuar chúng tỉ lệ nghịch với 35,210,12
=>35.(a+b)=210.(a-b)=12.(a.b)
=>35a+35b=210a-210b
=>35a-210a=-35b-210b
=>-175a=-245b =>a/b=-245/175=7/5
vậy a=7;b=5
Em tham khảo bài tại link dưới đây:
Câu hỏi của Hoàng Thị Minh Ngọc - Toán lớp 7 - Học toán với OnlineMath
+tổng của chúng là (x + y)
+hiệu của chúng là ( x-y )
+ tích của chúng là xy
Biết tổng,hiệu và tích của chúng tỉ lệ nghịch với 35, 210, và 12 ,
Tức là : 35(x + y) = 210(x - y) = 12xy
Hay:x+yx−y=21035⇒ 35(x + y) = 210(x - y) => (x - y) = x+y6 (1)
và (x - y) : xy = 12 : 210 => 12xy = 210(x - y) => (x - y) = 2xy35 (2)
Từ (1) ta có:x−y1=x+y6=[(x−y)+(x+y)]1+6=2x7 (3) (tc của dãy tỉ số bnhau)
Từ (1) ta lại có: x−y1=x+y6=[(x+y)−(x−y)]6−1=2b4 (4) (tc của dãy tỉ số bnhau)
Từ (2) & (3) suy ra:⇒2xy35=2x7⇒y=5
Từ (2) & (4) suy ra:2xy35=2y5⇒x=7
Vậy x = 7 và y = 5
Em tham khảo bài tại link dưới đây:
Câu hỏi của Hoàng Thị Minh Ngọc - Toán lớp 7 - Học toán với OnlineMath
\(35\left(x+y\right)=210\left(x-y\right)=12xy\)
\(\Rightarrow\)\(\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12xy}{420}\)
\(\Rightarrow\)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{xy}{35}\)( 1 )
\(\Rightarrow\)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{x}{7}\) ( 2 )
\(\Rightarrow\)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{y}{5}\) ( 3 )
Từ ( 1 ) ; ( 2 ) => x=7
Từ ( 1 ) ; ( 3 ) => y = 5
chứng minh rằng: x12-x9+x4-x+1 nhận giá trị dương với mọi x
gọi hai số dương đó là a và b
Theo bài ra : ( a + b ) , ( a - b ) , ab tỉ lệ nghịch với 35;210;12
\(\Rightarrow\)35 . ( a + b ) = 210 . ( a - b ) = 12ab
210 . ( a - b ) = 12ab ( 1 )
35 . ( a + b ) = 210 . ( a - b )
\(\Rightarrow\)35a + 35b = 210a - 210b \(\Rightarrow\)245b = 175a \(\Rightarrow\)a = \(\frac{7}{5}b\)
Thay a = \(\frac{7}{5}b\)vào ( 2 ) ta được : 210 . ( \(\frac{7}{5}b\)- b ) = 12 . \(\frac{7}{5}b\). b
210 . \(\frac{2}{5}b\)= \(\frac{84}{5}b\). b
hay \(84b=\frac{84b^2}{5}\)
\(\frac{b}{5}=1\)\(\Rightarrow b=5\)
Thay b = 5 vào ( 1 ) ta được : 210 . ( a - 5 ) = 12 . 5 . a
210a - 1050 = 60a
150a = 1050
a = 7
Vậy a = 7 ; b = 5
Gọi 2 số dương cần tìm là a và b. Giả sử a > b
Ta có:
- tổng của chúng là (a + b)
- hiệu của chúng là (a - b)
- tích của chúng là ab
Vì tổng, hiệu, tích của chúng TLN với 20,140,7
=> 20(a+b)=140(a-b)=7ab
Hay (a+b) : (a-b) = 140:20 => 20(a+b)=140(a-b) => (a-b)=(a+b)/7 (1)
và (a-b):(ab)= 7:140 => 7ab = 140(a-b) => (a-b)= ab/20 (2)
Từ (1) ta có:
(a-b)/1= (a+b)/7 = [(a-b)+(a+b)] / (1+7) = 2a/8 (3)
VÀ (a-b)/1 = (a+b)/7 = [(a-b) - (a+b)] / (7-1) = -2b/6 (4)
Từ (2) và (3)
=> ab/20 = 2a/8 => b= 5
Từ (2) và (4)
=> ab/20 = -2b/6 => a= -7
ĐS: a=-7 và b= 5
GỌI HAI SỐ ĐÓ LẦN LƯỢT LÀ A,B ( A >= B )
THEO ĐỀ , TA CÓ:
( A + B ) * ( A - B ) = D ( D\(\in\) N)
\(\Leftrightarrow\) A ^ 2 - B ^ 2 = D (LUÔN ĐÚNG)
=> \(\forall A,B\inℕ^∗\)TA ĐỀU CÓ CÁC TỔNG VÀ HIỆU TỈ LỆ NGHỊCH VỚI NHAU
mfnh rất cảm ơn Lê Tuấn Kiệt nhưng cho mình hỏi thế còn tích