K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2016

*GTNN:

A=\(\frac{x^2-4x+4-x^2-1}{x^2+1}\) =\(\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\) 

GTNN của A=-1 khi và chỉ khi x=2

*GTLN:

A=\(\frac{4x^2+4-4x^2-4x-1}{x^2+1}\) =4-\(\frac{\left(2x+1\right)}{x^2+1}\le4\) 

GTLN của A=4 khi và chỉ khi x=\(\frac{-1}{2}\)

 

2 tháng 9 2021

a) \(N=-1-x-x^2=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)

\(maxN=-\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(B=3x^2+4x-13=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{35}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{35}{3}\ge-\dfrac{35}{3}\)

\(minB=-\dfrac{35}{3}\Leftrightarrow x=-\dfrac{2}{3}\)

a: Ta có: \(N=-x^2-x-1\)

\(=-\left(x^2+x+1\right)\)

\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: ta có: \(B=3x^2+4x-13\)

\(=3\left(x^2+\dfrac{4}{3}x-\dfrac{13}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{43}{9}\right)\)

\(=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{43}{3}\ge-\dfrac{43}{3}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{2}{3}\)

24 tháng 10 2021

\(B=2x\left(x-4\right)-10=2x^2-8x-10\)

\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)

\(minB=-18\Leftrightarrow x=2\)

26 tháng 12 2016

ĐKXĐ x thuộc R

ta thấy x^2 +1 >=0

=> \(\frac{3-4x}{x^2+1}\)>=0

dấu bằng xảy ra khi và chỉa khi

3 -4x =0

=> 4x = 3

=> x = \(\frac{3}{4}\)

vậy MIN= 0 tại x = \(\frac{3}{4}\)

NV
5 tháng 10 2021

Biểu thức này không có min và cũng không có max

19 tháng 6 2016

A = \(\frac{3-4x}{x^2+1}\) <=> A.(x2 + 1) = 3 - 4x <=> Ax2 + 4x + A - 3 = 0 
Để phương thức trên tồn tại x thì 4 - A.(A-3) = -A2 + 3A +4 > 0 
<=> A2 - 3A - 4 < 0 
<=> (A+1). (A - 4) < 0 
<=> -1 < A < 4 
Vậy GTNN của A là -1 và GTLN của A là 4

6 tháng 12 2016

Đại số lớp 9

25 tháng 5 2019

Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)

Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2

\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)

Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)