Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow2x^2-18x-2x^2=0\\ \Rightarrow-18x=0\Rightarrow x=0\\ b,\Rightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\\ \Rightarrow5x=22\Rightarrow x=\dfrac{22}{5}\)
a: ĐKXĐ: \(x\notin\left\{10;-10;\sqrt{10};-\sqrt{10}\right\}\)
b: \(A=\dfrac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
\(=\dfrac{10x^3+40}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)
\(\left(\frac{9}{x.x^2-9.x}+\frac{1}{x+_{ }3}\right):\left(\frac{x-3}{x.3+x^2}-\frac{x}{3.x+9}\right)\) đk (x\(\ne\)o; công trừ 3)
<=>\(9+\frac{x.\left(x-3\right)}{x.\left(x^2-9\right)}\):\(\frac{3.\left(x-3\right)-x^2}{3x.\left(x+3\right)}\)
<=>\(-\frac{3}{x-3}=\frac{3}{3-x}\)
Bạn ơi mk k hiểu sao lại ra bước 2 ... bạn giải chi tiết giùm mk nha
dù sao cx cảm ơn bạn đã giúp mk
1) \(\left(2x+3\right)^2=4x^2+12x+9\)
\(\left(3x+2\right)^2=9x^2+12x+4\)
\(\left(2x+5\right)^2=4x^2+20x+25\)
\(\left(2x+\dfrac{1}{3}\right)^2=4x^2+\dfrac{4}{3}x+\dfrac{1}{9}\)
\(\left(3x+\dfrac{1}{3}\right)^2=9x^2+2x+\dfrac{1}{9}\)
2) \(\left(2x-3\right)^2=4x^2-12x+9\)
\(\left(3x-2\right)^2=9x^2-12x+4\)
\(\left(2x-5\right)^2=4x^2-20x+25\)
\(\left(2x-\dfrac{1}{3}\right)^2=4x^2-\dfrac{4}{3}x+\dfrac{1}{9}\)
\(\left(3x-\dfrac{1}{3}\right)^2=9x^2-2x+\dfrac{1}{9}\)
3) \(\left(2x-3\right)\left(2x+3\right)=4x^2-9\)
\(\left(3x-4\right)\left(3x+4\right)=9x^2-16\)
\(\left(2x-5\right)\left(2x+5\right)=4x^2-25\)
\(\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=x^2-\dfrac{1}{4}\)
\(\left(2x-\dfrac{1}{3}\right)\left(2x+\dfrac{1}{3}\right)=4x^2-\dfrac{1}{9}\)
1: \(\left(2x+3\right)^2=4x^2+12x+9\)
\(\left(3x+2\right)^2=9x^2+12x+4\)
\(\left(2x+5\right)^2=4x^2+20x+25\)
\(\left(2x+\dfrac{1}{3}\right)^2=4x^2+\dfrac{4}{3}x+\dfrac{1}{9}\)
\(\left(3x+\dfrac{1}{3}\right)^2=9x^2+2x+\dfrac{1}{9}\)
Ta có:
(2 - 3x)(x + 8) = (3x - 2)(3 - 5x)
⇔ (2 - 3x)(x + 8) - (3x - 2)(3 - 5x) = 0
⇔ (2 - 3x)(x + 8) + (2 - 3x)(3 - 5x) = 0
⇔ (2 - 3x)(x + 8 + 3 - 5x) = 0
⇔ (2 - 3x)(11 - 4x) = 0
⇔ 2 - 3x = 0 hay 11 - 4x = 0
⇔ 2 = 3x hay 11 = 4x
⇔ x = \(\dfrac{2}{3}\) hay x = \(\dfrac{11}{4}\)
Vậy tập nghiệm của pt S = \(\left\{\dfrac{2}{3};\dfrac{11}{4}\right\}\)
<=> (2-3x ) (x+8) + (2-3x ) (3-5x)=0
<=> (2-3x ) ( x+8 + 3-5x ) =0
<=> (2-3x ) ( 11 - 4x ) = 0
=> 2-3x =0 hoặc 11-4x =0
3x = 2 4x =11
x = 2/3 x = 11/4
\(a,=\dfrac{2y}{x}\\ b,=\dfrac{3\left(x+4\right)}{4\left(x-4\right)}\cdot\dfrac{-2\left(x-4\right)}{x+4}=\dfrac{-3}{2}\\ c,=\dfrac{\left(x+2\right)^2}{2\left(x-3\right)}\cdot\dfrac{x-3}{x+2}=\dfrac{x+2}{2}\\ d,=\dfrac{x+4+2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{3x}{x^2-4}\)
a, \(\dfrac{2y}{x}\)
b, \(\dfrac{3\left(x+4\right)}{4\left(x-4\right)}.\dfrac{-2\left(x-4\right)}{x+4}=\dfrac{-3}{2}\)
c, \(\dfrac{\left(x+2\right)^2}{2\left(x-3\right)}.\dfrac{x-3}{x+2}=\dfrac{x+2}{2}\)
d, \(\dfrac{x+4}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+4+2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{3x}{x^2-4}\)
\(\dfrac{x}{12}+\dfrac{1}{4}=\dfrac{x}{10}\)
\(\leftrightarrow\)\(\dfrac{5x}{60}+\dfrac{15}{60}=\dfrac{6x}{60}\)
\(\leftrightarrow\)\(5x+15=6x\)
\(\leftrightarrow\)\(15=6x-5x\)
\(\leftrightarrow\)\(15=x\)
Lời giải:
a.
$=(5x^2+5xy)+(10x+10y)=5x(x+y)+10(x+y)$
$=(x+y)(5x+10)=5(x+y)(x+2)$
b. Biểu thức không phân tích được thành nhân tử.
E = 2x2 + 3x + 8
= 2( x2 + 3/2x + 9/16 ) + 55/8
= 2( x + 3/4 )2 + 55/8 ≥ 55/8 ∀ x
Dấu "=" xảy ra khi x = -3/4
=> MinE = 55/8 <=> x = -3/4