Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)
\(=x^2y^2+xy-x^2y+xy^2+xy+1-x+y+x^2y+x-x^2+xy-xy^2-y+xy-y^2\)
\(=x^2y^2+2xy-x^2-y^2+1\)
a) x2-x-y2-y=(x2-y2)-(x+y)=(x+y)(x-y)-(x+y)=(x+y)(x-y-1)
b)x2-2xy+y2-z2=(x-y)2-z2=(x-y-z)(x-y+z)
c)5x-5y+ax-ay=5(x-y)+a(x-y)=(x-y)(5+a)
d)a3-a2x-ay+xy=a2(a-x)-y(a-x)=(a-x)(a2-y)
e)4x2-y2+4x+1=[(2x)2+2.2x.1+12]-y2=(2x+1)2-y2=(2x+1-y)(2x+1+y)
Chúc bạn học tốt!
Bài 1:
\(x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3+y\right)\left(x-3-y\right)\)
Bài 2:
\(x^2-x-12=0\)
\(\Leftrightarrow x^2-4x+3x-12=0\)
\(\Leftrightarrow x\left(x-4\right)+3\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\x-4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=4\end{array}\right.\)
1. x2+6x-9-y2
=-(x2-6x+y2)-32
=-(x-y)2-32
=(-x+y-3)(-x+y+3)
A=x2+y2+2x-4y+5
=x2+2x+1+y2-4y+4
=(x+1)2+(y-2)2
A=0
=>(x+1)2+(y-2)2=0
<=>x+1=0 và y-2=0
<=>x=-1 và y=2
H=x2+y2-xy-x+y+1
=>4H=4x2+4y2-4xy -4x +4y +4
4H= (4x2+y2+1-4xy-4x+2y)+3y2+2y +3
4H=(2x-y-1)2+3(y2+\(\dfrac{2}{3}y\) +\(\dfrac{1}{9}\))+ \(\dfrac{8}{3}\)
4H = (2x-y-1)2+3(y+\(\dfrac{1}{3}\) )2 \(+\dfrac{8}{3}\) \(\ge\)\(\dfrac{8}{3}\)(vì \(\left(2x-y-1\right)^2\ge0\forall x,y;3\left(y+\dfrac{1}{3}\right)^2\ge0\forall y\)
=> H \(\ge\dfrac{2}{3}\)
Dấu ''=' xảy ra khi \(\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy Hmin= 2/3khi x=1/3;y=-1/3
\(H=x^2+y^2-xy-x+y+1\)
\(\Rightarrow4H=4x^2+4y^2-4xy-4x+4y+4\)
\(\Leftrightarrow4A=4x^2+y^2+1-4xy+2y-4x+3y^2+2y+3\)
\(\Rightarrow3.4A=3\left(2x-y-1\right)^2+9y^2+6y+9\)
\(\Leftrightarrow12A=3\left(2x-y-1\right)^2+\left(9y^2+6y+1\right)+8\)
\(\Leftrightarrow12A=3\left(2x-y-1\right)^2+\left(3y+1\right)^2+8\)
Mà \(3\left(2x-y-1\right)^2+\left(3y+1\right)^2+8\ge8\forall x,y\)
\(\Rightarrow12A\ge8\)
\(\Rightarrow A\ge\dfrac{8}{12}=\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}2x-y-1=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)