Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$
$\Leftrightarrow x=4$
Bài 2: $x-\sqrt{x}$
ĐKXĐ: $x\geq 0$
$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$
$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$
$\Leftrightarrow x=\frac{1}{4}$
\(A=\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{7}}{2}\right)^2}+\sqrt{\left(\dfrac{1}{2}-x\right)^2+\left(\dfrac{\sqrt{7}}{2}\right)^2}\)
\(A\ge\sqrt{\left(x+\dfrac{1}{2}+\dfrac{1}{2}-x\right)^2+\left(\sqrt{7}\right)^2}=2\sqrt{2}\)
\(A_{min}=2\sqrt{2}\) khi \(x+\dfrac{1}{2}=\dfrac{1}{2}-x\Leftrightarrow x=0\)
Bạn cũng có thể bình phương A lên
1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)
Ta có: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(1,A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\\ 2,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)
a: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)
\(M=A\cdot B=\dfrac{x}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
=>\(M=\dfrac{x}{\sqrt{x}+2}\)
=>\(M=\dfrac{x-4+4}{\sqrt{x}+2}=\sqrt{x}-2+\dfrac{4}{\sqrt{x}+2}\)
=>\(M=\sqrt{x}+2+\dfrac{4}{\sqrt{x}+2}-4\)
=>\(M>=2\cdot\sqrt{\left(\sqrt{x}+2\right)\cdot\dfrac{4}{\sqrt{x}+2}}-4=0\)
Dấu '=' xảy ra khi \(\sqrt{x}+2=\sqrt{4}=2\)
=>\(\sqrt{x}=0\)
=>x=0(nhận)
\(A=\)\(\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\) (đk: \(x\ge-1\))
\(=\sqrt{\left(x+1\right)+2\sqrt{x+1}+1}+\sqrt{\left(x+1\right)-2\sqrt{x+1}+1}\)
\(=\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-1\right)^2}\)
\(=\sqrt{x+1}+1+\left|\sqrt{x+1}-1\right|\)
\(=\left[{}\begin{matrix}\sqrt{x+1}+1+\sqrt{x+1}-1;\sqrt{x+1}\ge1\\\sqrt{x+1}+1-\left(\sqrt{x+1}-1\right);\sqrt{x+1}< 1\end{matrix}\right.\)
\(=\left[{}\begin{matrix}2\sqrt{x+1};x\ge0\\2;-1\le x< 0\end{matrix}\right.\)
Có \(2\sqrt{x+1}\ge2\) tại \(x\ge0\)
\(\Rightarrow\min\limits_{x\ge0}A=2\)
Dấu = xảy ra <=> x=0 mà tại \(-1\le x< 0\) thì A=2
Vậy giá trị nhỏ nhất của biểu thức là 2 tại x=0 hoặc \(-1\le x< 0\)
(Ủa đề zì kì)
\(ĐKXĐ:x\ge-1\)
Đặt \(A=\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\)
\(=\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-2\sqrt{x+1}+1}\)
\(=\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-1\right)^2}\)
\(=\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-1\right|\)
\(=\left|\sqrt{x+1}+1\right|+\left|1-\sqrt{x+1}\right|\)
\(\ge\left|\sqrt{x+1}+1+1-\sqrt{x+1}\right|=2\)
Dấu "=" xảy ra khi \(\left(\sqrt{x+1}+1\right)\left(1-\sqrt{x+1}\right)\ge0\)
\(\Leftrightarrow1-\sqrt{x+1}\ge0\)
\(\Leftrightarrow\sqrt{x+1}\le1\)
\(\Leftrightarrow x\le0\). Mà \(x\ge-1\) Nên \(-1\le x\le0\)
Vậy Min \(A=2\) khi \(-1\le x\le0\)
Áp dụng bất đẳng thức AM - GM:
\(\sqrt{\left(x^2-15\right)\left(x-3\right)}\le\dfrac{x^2-15+x-3}{2}=\dfrac{x^2+x-18}{2};\sqrt{x^2-15}\le\dfrac{x^2-15+1}{2}=\dfrac{x^2-14}{2};\sqrt{x-3}\le\dfrac{x-3+1}{2}=\dfrac{x-2}{2}\).
Do đó \(F\ge x^2+x-\dfrac{x^2+x-18}{2}-\dfrac{x^2-14}{2}-\dfrac{x-2}{2}-38=-21\).
Đẳng thức xảy ra khi x = 4.
Vậy...
\(T=\sqrt{x^2-x+2}+\sqrt{x^2+x+2}\)
\(T^2=x^2-x+2+x^2+x+2+2\sqrt{\left(x^2-x+2\right)\left(x^2+x+2\right)}\)
\(T^2=2x^2+4+2\sqrt{\left(x^2+2\right)^2-x^2}\)
\(T^2=2x^2+4+2\sqrt{x^4+4x^2+4-x^2}\)
\(T^2=2x^2+4+2\sqrt{x^4+3x^2+4}\)
Nhận xét : \(2x^2\ge0\forall x\)
\(x^4+3x^2+4=x^2\left(x^2+3\right)+4\)
Có : \(x^2\ge0,x^2+3\ge0\forall x\)nên
\(\Rightarrow x^2\left(x^2+3\right)\ge0\forall x\)
Cho nên \(x^4+3x^2+4\ge4\)
Vậy \(T^2=2x^2+4+2\sqrt{x^4+3x^2+4}\ge4+2\sqrt{4}=4+4=8\)
Do \(T^2\ge8\)nên :
\(\Rightarrow A\ge2\sqrt{2}\)
Dấu " = " xảy ra \(\Leftrightarrow x=0\)