Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a, \(x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow x=0;4\)
b, \(5x\left(x-2020\right)-x+2020=0\)
\(\Leftrightarrow5x\left(x-2020\right)-\left(x-2020\right)=0\Leftrightarrow\left(5x-1\right)\left(x-2020\right)=0\)
\(\Leftrightarrow x=\frac{1}{5};2020\)
c, \(\left(4x+5\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow16x^2+40x+25-\left(4x^2-4x+1\right)=0\)
\(\Leftrightarrow12x^2+44x+24=0\Leftrightarrow4\left(x+3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow x=-3;-\frac{2}{3}\)
\(A=x^2-20x+101\)
\(A=x^2-2\cdot x\cdot10+100+1\)
\(A=\left(x-10\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=10\)
___
\(B=4a^2+4a+2\)
\(B=4a^2+4a+1+1\)
\(B=\left(2a+1\right)^2+1\ge1\forall a\)
Dấu "=" xảy ra \(\Leftrightarrow a=\frac{-1}{2}\)
___
\(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=x^2-4xy+4y^2+y^2+10x-22y+28\)
\(C=\left(x-2y\right)^2+2\cdot\left(x-2y\right)\cdot5+25+y^2-2y+1+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
___
\(D=4x-x^2+3\)
\(D=-\left(x^2-4x-3\right)\)
\(D=-\left(x^2-4x+4-7\right)\)
\(D=-\left[\left(x-2\right)^2-7\right]\)
\(D=7-\left(x-2\right)^2\le7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
___
\(E=x-x^2\)
\(E=-\left(x^2-x\right)\)
\(E=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)
\(E=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(E=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
a, \(A=x^2-20x+101=x^2-2.x.10+10^2+1\)
\(=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-10\right)^2=0\)
\(\Leftrightarrow x-10=0\)
\(\Leftrightarrow x=10\)
Vậy : \(A_{min}=1\Leftrightarrow x=10\)
b) \(B=4a^2+4a+2=\left(2a\right)^2+2.2a.1+1^2+1\)
\(=\left(2a+1\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2a+1\right)^2=0\)
\(\Leftrightarrow2a+1=0\)
\(\Leftrightarrow2a=-1\)
\(\Leftrightarrow a=-\frac{1}{2}\)
Vậy : \(B_{min}=1\Leftrightarrow x=-\frac{1}{2}\)
a) Có x = 99 => x+1 = 100
A = x5 - (x+1)x4 + (x+1)x3 + (x+1)x2 + (x+1)x - 9
= x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - 9
= x - 9
=> A = 90
b) Chữa đề: x6 - 20x5 - 20x4 - 20x3 - 20x2 - 20x + 3
Có: x = 21 => x-1 = 20
B = x6 - (x-1)x5 - (x-1)x4 - (x-1)x3 - (x-1)x2 - (x-1)x + 3
= x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x + 3
= x + 3
=> B = 24
\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)
\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)
\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)
\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)
\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)
\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)
b \(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
hay \(x\in\left\{0;2\right\}\)
c: \(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
=>(x-8)(3x+2)=0
=>x=8 hoặc x=-2/3
d: \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
=>x=2 hoặc x=1
e: \(\Leftrightarrow x\left(x^2-11x+30\right)=0\)
=>x(x-5)(x-6)=0
hay \(x\in\left\{0;5;6\right\}\)
b: \(\Leftrightarrow x\left(x^3-2x^2+10x-20\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
hay \(x\in\left\{0;2\right\}\)
c: \(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
=>(x-8)(3x+2)=0
hay \(x\in\left\{8;-\dfrac{2}{3}\right\}\)
d: \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
=>x=1 hoặc x=2
1. \(x^4-2x^2+1=\left(x^2-1\right)^2\)
2. \(x^2+5x+\dfrac{25}{4}=x^2+2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)
3. \(16x^2-8x+1=\left(4x-1\right)^2\)
4. \(x^2+x-y^2+y=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x-y+1\right)\left(x+y\right)\)
5. \(\dfrac{1}{4}x^2-\dfrac{4}{9}y^2=\left(\dfrac{1}{2}x-\dfrac{2}{3}y\right)\left(\dfrac{1}{2}x+\dfrac{2}{3}y\right)\)
6. \(a^2-2ab+b^2-x^2=\left(a-b\right)^2-x^2=\left(a-b-x\right)\left(a-b+x\right)\)
7. \(4x^2-20x+25-y^2=\left(2x-5\right)^2-y^2=\left(2x-5-y\right)\left(2x-5+y\right)\)
Bài làm :
\(1\text{)}x^2-20x+2020=\left(x^2-20x+100\right)+1920=\left(x-10\right)^2+1920\)
Vì (x-10)2 ≥ 0 với mọi x
\(\Rightarrow\left(x-10\right)^2+1920\ge1920\forall x\)
Dấu "=" xảy ra khi
(x-10)2 = 0
<=> x-10=0
<=> x=10
Vậy GTNN của biểu thức là : 1920 <=> x=10
\(\text{2)}-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)
Vì -(x-2)2 ≤ 0 với mọi x
\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)
Dấu "=" xảu ra khi :
x-2=0
<=> x=2
Vậy GTLN của biểu thức là -1 <=> x=2
x2 - 20x + 2020 = ( x2 - 20x + 100 ) + 1920 = ( x - 10 )2 + 1920 ≥ 1920 ∀ x
Dấu "=" xảy ra <=> x = 10
Vậy GTNN của biểu thức = 1920 <=> x = 10
-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 ∀ x
Dấu "=" xảy ra <=> x = 2
Vậy GTLN của biểu thức = -1 <=> x = 2