Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
\(1\text{)}x^2-20x+2020=\left(x^2-20x+100\right)+1920=\left(x-10\right)^2+1920\)
Vì (x-10)2 ≥ 0 với mọi x
\(\Rightarrow\left(x-10\right)^2+1920\ge1920\forall x\)
Dấu "=" xảy ra khi
(x-10)2 = 0
<=> x-10=0
<=> x=10
Vậy GTNN của biểu thức là : 1920 <=> x=10
\(\text{2)}-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)
Vì -(x-2)2 ≤ 0 với mọi x
\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)
Dấu "=" xảu ra khi :
x-2=0
<=> x=2
Vậy GTLN của biểu thức là -1 <=> x=2
x2 - 20x + 2020 = ( x2 - 20x + 100 ) + 1920 = ( x - 10 )2 + 1920 ≥ 1920 ∀ x
Dấu "=" xảy ra <=> x = 10
Vậy GTNN của biểu thức = 1920 <=> x = 10
-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 ∀ x
Dấu "=" xảy ra <=> x = 2
Vậy GTLN của biểu thức = -1 <=> x = 2
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)
\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)
\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)
\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)
\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)
\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)
Ta có:
\(A=\frac{4x+5}{x^2+2x+6}=\frac{x^2+2x+6-x^2-2x-6+4x+5}{x^2+2x+6}\)
\(=\frac{\left(x^2+2x+6\right)-x^2+2x-1}{x^2+2x+6}=1-\frac{\left(x-1\right)^2}{x^2+2x+6}\le1\)
=> max A = 1 tại x = 1
\(A=\frac{4x+5}{x^2+2x+6}=\frac{-\frac{4}{5}\left(x^2+2x+6\right)+\frac{4}{5}\left(x^2+2x+6\right)+4x+5}{x^2+2x+6}\)
\(=-\frac{4}{5}+\frac{4x^2+28x+49}{5\left(x^2+2x+6\right)}=-\frac{4}{5}+\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}\ge-\frac{4}{5}\)
=> min A = -4/5 <=> 2x + 7 = 0 <=> x = -7/2
Vậy...
\(A=x^2+4x+100\)
\(A=x\left(x+4\right)+100\ge100\)
Dấu " = " xảy ra
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
Vậy Min A = 100 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
\(B=-2x^2+6x-4\)
\(B=2x\left(3-x\right)-4\le-4\)
Dấu " = " xảy ra
\(\Leftrightarrow2x\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy Max B = -4 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
A = x2 + 5x + 7
= ( x2 + 5x + 25/4 ) + 3/4
= ( x + 5/2 )2 + 3/4
\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinA = 3/4 <=> x = -5/2
B = 6x - x2 - 5
= -( x2 - 6x + 9 ) + 4
= -( x - 3 )2 + 4
\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
=> MaxB = 4 <=> x = 3
C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
= ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Đẳng thức xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x = -5
=> MinC = -36 <=> x = 0 hoặc x = -5
Ta có :
\(\sqrt{6-x^2}\le\sqrt{6}\)
\(\Rightarrow-2\sqrt{6-x^2}\ge-2\sqrt{6}\)
\(\Rightarrow5-2\sqrt{6-x^2}\ge5-2\sqrt{6}\)
\(\Rightarrow A=\frac{1}{5-2\sqrt{6-x^2}}\le\frac{1}{5-2\sqrt{6}}=5+2\sqrt{6}\)
\(Max_A=5+2\sqrt{6}\Leftrightarrow x=0\)
Chúc bạn học tốt !!!