Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)đặt A=\(x^2+5y^2-2xy+4y+3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
=\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\)
ta thấy GTNN của A =2 khi x=y=-1/2
\(D=x^2+5y^2+2xy-2y+2005\)
\(D=\left(x^2+2xy+y^2\right)+\left(4y^2-2y+\frac{1}{4}\right)+2004,75\)
\(D=\left(x+y\right)^2+\left(2y+\frac{1}{2}\right)^2+2004,75\)
Mà \(\left(x+y\right)^2\ge0\forall x;y\)
\(\left(2y+\frac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow D\ge2004,75\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y=0\\2y+\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{1}{4}\end{cases}}\)
Vậy \(D_{Min}=2004,75\Leftrightarrow\left(x;y\right)=\left(\frac{1}{4};-\frac{1}{4}\right)\)
\(D=x^2+5y^2-2xy+4y+3\)
\(=x^2-2xy+y^2+4y^2+4y+1+2\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\forall x,y\\\left(2y+1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(2y+1\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{1}{2}\)
Vậy \(D_{min}=2\Leftrightarrow x=y=-\dfrac{1}{2}\)
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu '=' xảy ra khi x(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d) Ta có: \(x^2+5y^2-2xy+4y+3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)
D = (x2 - 2xy + y2) + [(2y)2+ 2.2y.1 + 12] + 2
= (x - y)2 + (2y + 1)2 + 2
Ta thấy: (x - y)2 ≥0∀x thuộc R
(2y + 1)2 ≥0∀y thuộc R
=> (x - y)2 + (2y + 1)2 ≥0
=> (x - y)2 + (2y + 1)2 + 2 ≥2
=> Min D = 2 \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\2y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x=y=\dfrac{1}{2}\)
Vậy Min D = 2 khi x=y=1/2
\(D=x^2+5y^2-2xy+4y+3\)
\(=x^2-2xy+y^2+4y^2+4y+1+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\)
Do \(\left(x-y\right)^2\ge0\forall x,y\in R\)
\(\left(2y+1\right)^2\ge0\forall y\in R\)
\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\in R\)
\(\Rightarrow\) Giá trị nhỏ nhất của D là 2 \(\Leftrightarrow x=y=-\dfrac{1}{2}\)