Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopxki với 2 dãy số: x; 2y và 1;1. Ta có:
\(\left(x^2+2y^2\right)\left(1^2+1^2\right)\ge\left(x+2y\right)^2\)
\(<=>\left(x^2+2y^2\right)\times2\ge1\)
\(<=>\left(x^2+2y^2\right)\ge\frac{1}{2}\)
\(<=>P\ge\frac{1}{2}\)
Vậy GTNN của P là 1/2 <=> \(\frac{x}{1}=\frac{2y}{1}<=>x=2y\)
áp dụng BĐT cauchy schwarz ta có:
(x2+2y2)(1+2)\(\ge\)(x+2y)2=1
nên x2+2y2\(\ge\frac{1}{3}\)
dạng bài này bn có thể dùng miền giá trị hàm để tách nhé(cái này chỉ làm nháp thôi)
(Chú ý phương trình bậc 2 :ax2+bx+c=0.Phương trình có \(\Delta=b^2-4ac\)(\(\Delta\)là biệt số Đen-ta)
Nếu \(\Delta\ge0\)thì pt có 2 nghiệm
Nếu \(\Delta< 0\)thì pt vô nghiệm
Bài làm
Gọi m là 1 giá trị của \(\frac{x^2-x+1}{x^2+x+1}\)
Ta có m= \(\frac{x^2-x+1}{x^2+x+1}\)
=>m(x2+x+1)=x2-x+1
=>mx2+mx+m-x2+x-1=0 =>(m-1)x2 +(m+1)x+m-1=0(1)
Nếu m=0..............(th này ko phải xét)
Nếu m\(\ne0\)thì pt (1) có nghiệm khi \(\Delta=b^2-4ac\ge0\)
\(\Leftrightarrow\left(m+1\right)^2-4.\left(m-1\right)\left(m-1\right)\ge0\)
\(\Leftrightarrow m^2+2m+1-4m^2+8m-4\ge0\)
\(\Leftrightarrow-3m^2+10m-3\ge0\)\(\Leftrightarrow3m^2-10m+3\le0\)
\(\Leftrightarrow\left(m-3\right)\left(3m-1\right)\le0\)
=> có 2 TH
TH1: m-3\(\le0\)và\(3m-1\ge0\)
=>\(\hept{\begin{cases}m\le3\\m\ge\frac{1}{3}\end{cases}\Leftrightarrow\frac{1}{3}\le m\le3}\)(t/m)(*)
TH2\(\hept{\begin{cases}m-3\ge0\\3m-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge3\\m\le\frac{1}{3}\end{cases}}}\)(vô lí)(**)
Từ (*),(**) =>\(\frac{1}{3}\le m\le3\)
=>\(\hept{\begin{cases}Min_P=\frac{1}{3}\\Max_P=3\end{cases}}\)
Từ đây bạn tách ngược từ dưới lên.
Nếu ko biết thì nhắn tin cho mk ,mk tách cho
tk mk nha
a, tự lm......
P=x2 / x-1
b, P<1
=> x2/x-1 <1
<=>x2/x-1 -1 <0
<=>x2-x+1 / x-1<0
Vi x2-x+1= (x -1/2 )2+3/4 >0
=> Để P<1
x-1 <0
x <1
c, x2/x-1 = x2-1+1/x-1
= x+1 +1/x-1
= 2 +(x-1) + 1/x-1
Áp dụng BDT Cô si ta có :
x-1 + 1/x-1 >hoặc = 2
=> P>= 3
Đầu = xảy ra <=> x=2( x >1)
Vay......
làm đúng nhuwng phần c, phải >=4 cơ vì công cả 2 vế với 2 ta có P>=4
\(a,\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(=\frac{\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\left(x^4+1-x^2\right)\)
\(=\frac{x^4-1-x^4+x^2-1}{x^2+1}\)
\(=\frac{x^2+2}{x^2+1}\)
b, biển đổi \(M=1-\frac{3}{x^2+1}\)
M bé nhất khi \(\frac{3}{x^2+1}\)lớn nhất
\(\Leftrightarrow x^2+1\)bé nhất \(\Leftrightarrow x^2=0\)
\(\Rightarrow x=0\Rightarrow\)M bé nhất =-2
Xet \(P-\frac{1}{3}=\frac{x^2-x+1}{x^2+x+1}-\frac{1}{3}=\frac{3x^2-3x+3-\left(x^2+x+1\right)}{x^2+x+1}=\frac{2x^2-4x+2}{x^2+x+1}\)
=\(\frac{2\left(x^2-2x+1\right)}{x^2+x+1}=\frac{2\left(x-1\right)^2}{x^2+x+1}\ge0\) (do \(x^2+x+1>0\forall x\) )
Suy ra \(P\ge\frac{1}{3}\)
Dau = xay ra khi \(x-1=0\Leftrightarrow x=1\)
Ta CM 1 số BĐT phụ sau :
\(\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab-4ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(true\right)\)
và \(x^2+x+1=x^2+2x+1-x\ge\left(x+1\right)^2-\frac{\left(x+1\right)^2}{4}=\frac{3\left(x+1\right)^2}{4}\)
\(\Rightarrow P=\frac{x^2-x+1}{x^2+x+1}=1-\frac{2x}{x^2+x+1}\)
\(\ge1-\frac{\frac{\left(x+1\right)^2}{2}}{x^2+x+1}\ge1-\frac{\frac{\left(x+1\right)^2}{2}}{\frac{3\left(x+1\right)^2}{4}}=1-\frac{2}{3}=\frac{1}{3}\)
Dấu "=" xảy ra khi \(x+1=0\Leftrightarrow x=-1\)