Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x4+3x2+2
Ta có :
\(x^4\ge0\forall x\) và \(3x^2\ge0\forall x\Rightarrow x^4+3x^2\ge0\forall x\)
\(\Rightarrow A=x^4+3x^2+2\ge2\forall x\) . Có GTNN là 2 khi x = 0
Vậy AMin = 2 <=> x = 0
B = (x4+5)2
Ta có :
\(x^4\ge0\forall x\Leftrightarrow x^4+5\ge5\forall x\)
\(\Rightarrow B=\left(x^4+5\right)^2\ge5^2=25\forall x\) . Có GTNN là 25 khi tại x = 0
Vậy BMin = 25 <=> x = 0
C=(x-1)2+(y+2)2
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\) nên C = \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\) . Có GTNN là 0 tại \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy CMin = = <=> x=1 , y=-2
ta có x^2, x^4 \(\ge\)0. lũy thừa với số mũ chẵn là số không âm
A = x^4 + 3x^2+2 \(\ge\)0 + 3.0+2 =2. Vậy GTNN là 2 khi x = 0
B = (x^4 + 5)^2 \(\ge\)(0+5)^2=5^2=25. Vậy GTNN của B là 25 khi x=0
Ta có (x-1)^2\(\ge\)0 và (y+2)^2 \(\ge\)0
C= (x-1)^2 + (y+2)^2 \(\ge\)0 + 0 = 0.
Vậy GTNN của C là 0
khi x-1=0 hay x=1
và y+2=0 hay hay y=-2
bn vào cái này nhe https://www.youtube.com/watch?v=yfbjJufBruc
B = | x + 1 | + | x - 2 | lớn hơn hoặc bằng | x + 1 + 2 - x | = 3
Dấu "=" xảy ra <=>\(\hept{\begin{cases}x+1\ge0\\2-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le2\end{cases}\Rightarrow}-1\le x\le2}\)
Vậy,..........
À mà \(B=|x-1|+|x-2|\) chứ ko phải \(B=|x+1|+|x-2|\) nha bn