K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

\(A=2+\sqrt{x}-1=\sqrt{x}+1\)

\(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1\ge1\)

Vậy MinA=1

30 tháng 10 2021

\(a,A=\left|2-4x\right|-6\ge-6\\ A_{min}=-6\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\\ b,x^2+1\ge1\Leftrightarrow B=1-\dfrac{4}{x^2+1}\ge1-\dfrac{4}{1}=-3\\ B_{min}=-3\Leftrightarrow x=0\)

\(A\ge1\forall x\)

Dấu '=' xảy ra khi x=0

\(B\ge-5\forall x\)

Dấu '=' xảy ra khi x=0

16 tháng 1 2022

\(A=x^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(A_{min}=1\Leftrightarrow x=0\)

\(B=3x^4-5\ge-5\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(B_{min}=-5\Leftrightarrow x=0\)

24 tháng 11 2021

\(A=\dfrac{3\left(\sqrt{x}+1\right)-2}{2\left(\sqrt{x}+1\right)}=\dfrac{3}{2}-\dfrac{1}{\sqrt{x}+1}\)

Ta có \(\sqrt{x}+1\ge1\Leftrightarrow-\dfrac{1}{\sqrt{x}+1}\ge-1\)

\(\Leftrightarrow A\ge\dfrac{3}{2}-1=\dfrac{1}{2}\)

Dấu \("="\Leftrightarrow x=0\)

3 tháng 9 2016

1,

Có \(\sqrt{x}\ge0\)với mọi x

=> 2 + \(\sqrt{x}\ge\)2 với mọi x

=> A \(\ge\)2 với mọi x

Dấu "=" xảy ra <=> \(\sqrt{x}=0\)<=> x = 0

KL: Amin = 2 <=> x = 0

2, (câu này phải là GTLN chứ nhỉ)

Có \(\sqrt{x-1}\ge0\)với mọi x

=> \(2.\sqrt{x-1}\ge0\)với mọi x

=> \(5-2.\sqrt{x-1}\le5\)với mọi x

=> B \(\le\)5 với mọi x

Dấu "=" xảy ra <=> \(\sqrt{x-1}=0\)<=> x - 1 = 0 <=> x = 1

KL Bmax = 5 <=> x = 1

\(\sqrt{x}\ge0\)

\(\Rightarrow A=2+\sqrt{x}\ge2+0\ge2\)

\(MinA=2\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)

2) \(5-2\sqrt{x-1}\le5\)

\(MinA=5\Leftrightarrow x-1=0\Rightarrow x=1\)

12 tháng 1 2017

ĐK x>=0

GTNN =-7 khi x=0

\(N+7=\frac{2\sqrt{x}-7+3\sqrt{x}+7}{3\sqrt{x}+1}=\frac{5\sqrt{x}}{3\sqrt{x}+1}\ge0\)mọi x>=0 đảng thức khi x=0

12 tháng 7 2017

\(\sqrt{x^2+1}-2=0\)

\(\sqrt{x^2+1}=2\)

Giá trị nhỏ nhất của biểu thức đạt được khi \(x=\sqrt{3}\)

11 tháng 11 2019

toán lớp mấy vậy bn

11 tháng 11 2019

Ta có: \(\sqrt{x}\ge0\)

\(\Rightarrow\frac{1}{2}+\sqrt{x}\ge\frac{1}{2}\)

Vậy \(P_{min}=\frac{1}{2}\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

Ta có: \(\sqrt{x-1}\ge0\)

\(\Leftrightarrow2\sqrt{x-1}\ge0\)

\(\Leftrightarrow-2\sqrt{x-1}\le0\)

\(\Leftrightarrow7-2\sqrt{x-1}\le7\)

Vậy \(Q_{max}=7\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

1 tháng 12 2019

A= \(|\sqrt{x^2}+\sqrt{1}-9|+|\sqrt{x^2}+\sqrt{1}-12|\)

A=\(|x+1-9|+|x+1-12|\)

A=\(|x-8|+|x-11|\)

TH1: x<0

=> A= (-x)-8 + (-x) -11

A=(-x-x)-(8+11)

A=-2x-19

TH2:x>0

=> A=x-8+x-11

A=(x+x)-(8+11)

A=2x-19

Tương tự x=0 sau đấy cậu KL nhé, phần sau mình lười

    
1 tháng 12 2019

Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\):

\(\left|\sqrt{x^2+1}-9\right|+\left|\sqrt{x^2+1}-12\right|\)\(=\left|\sqrt{x^2+1}-9\right|+\left|12-\sqrt{x^2+1}\right|\)

\(\ge\left|\left(\sqrt{x^2+1}-9\right)+\left(12-\sqrt{x^2+1}\right)\right|=3\)

Vậy \(A_{min}=3\Leftrightarrow\left(\sqrt{x^2+1}-9\right)\left(12-\sqrt{x^2+1}\right)\ge0\)

\(TH1:\hept{\begin{cases}\sqrt{x^2+1}-9\ge0\\12-\sqrt{x^2+1}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+1\ge81\\x^2+1\le144\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2\ge80\\x^2\le143\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{80}\le x\le\sqrt{143}\\-\sqrt{80}\ge x\ge-\sqrt{143}\end{cases}}\)

\(TH2:\hept{\begin{cases}\sqrt{x^2+1}-9\le0\\12-\sqrt{x^2+1}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+1\le81\\x^2+1\ge144\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2\le80\\x^2\ge143\end{cases}}\left(L\right)\)