Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa
\(\frac{x^2}{x-1}=\frac{x^2-1+1}{x-1}=\frac{\left(x-1\right)\left(x+1\right)+1}{x-1}=x+1+\frac{1}{x-1}=x-1+\frac{1}{x-1}+2\)
Do \(x>1\) nên \(x-1>0;\frac{1}{x-1}>0\) Áp dụng bất đẳng thức Cauchy ta có :
\(x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right).\frac{1}{x-1}}=2\)
\(\Rightarrow x-1+\frac{1}{x-1}+2\ge4\) hay \(\frac{x^2}{x-1}\ge4\) có GTNN là 4
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
Ta có \(\frac{x^2}{x-1}=\frac{x^2-1}{x-1}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)+2. Áp dụng cosi cho 2 số x+1 và 1/x-1 ta có x+1+1/x-1\(\ge\)2\(\sqrt{\left(x-1\right)\frac{1}{x-1}}=1\), suy ra biểu thức \(\ge\)3, vậy giá trị nn =3 khi x-1=1/x-1, đến đó bn giải tìm x nha
Tham khảo thử đúng không nha mn
Áp dụng bất đẳng thức cô si cho hai số dương ta có
\(x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}\Rightarrow xy\le\dfrac{2017^2}{4}=\dfrac{4068289}{4}\)
Dấu " = " xảy ra khi: \(x=y=\dfrac{2017}{2}=1008,5\)
Vậy GTLN của tích xy là \(\dfrac{4068289}{4}\) khi \(x=y=1008,5\)
\(\sqrt{x-2}+\sqrt{4-x} = 2x^{2}-5x-1\) ( ĐKXĐ : \(2\le x\le4\) )
Áp dụng BĐT Cô - si cho hai số không âm ta được
\(x^2+3+\frac{1}{x^2+3}\ge2\sqrt{\left(x^2+3\right)\cdot\frac{1}{x^2+3}}=2\sqrt{1}=2\)
Dấu = xảy ra \(\Leftrightarrow x^2+3=\frac{1}{x^2+3}\)
\(\Leftrightarrow\left(x^2+3\right)^2=1\)
\(\Leftrightarrow x^4+6x^2+9=1\)
\(\Leftrightarrow x^4+6x^2+8=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)=0\) hoặc \(\left(x^2+4\right)=0\)
\(\Leftrightarrow x^2=-2\) hoặc \(x^2=-4\) (vô nghiệm) (Sai đề r hay s á b, mik nghĩ là \(x^2-3\)ms đúng)
Vậy GTNN của M là 2
\(-----------\)
Đặt \(\alpha=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\)và \(t=\sqrt{x}\) \(\Rightarrow\) \(\hept{\begin{cases}\alpha>0\\t>0\end{cases}\left(i\right)}\) với mọi \(x>0\)
Khi đó, ta biểu diễn lại \(\alpha\) dưới dạng biến số \(t\) như sau:
\(\alpha=\frac{4t^4+9t^2+18t+9}{4t^3+4t^2}=\frac{3\left(4t^3+4t^2\right)+\left(4t^4-12t^3-3t^2+18t+9\right)}{4t^3+4t^2}\)
nên \(\alpha=3+\frac{\left(2t^2-3t-3\right)^2}{4t^3+4t^2}\ge0\) với mọi \(t>0\) \(\Rightarrow\) \(\hept{\begin{cases}4t^3+4t^2>0\\2t^2-3t-3\ge0\end{cases}}\) (do \(\Delta_t>0\) )
Dấu \("="\) xảy ra khi và chỉ khi \(2t^2-3t-3=0\)
Ta thành lập biệt thức \(D=b^2-4ca\) với tập xác định của pt là \(t\in\left(0;\infty\right)\) như sau:
\(\Delta_t=3^2+4.2.3=33\)
Do đó, ta tính được \(t_1=\frac{3-\sqrt{33}}{4};\) \(t_2=\frac{3+\sqrt{33}}{4}\)
Nhưng ta chỉ chấp nhận
\(t=\frac{3+\sqrt{33}}{4}\) (do điều kiện \(\left(i\right)\) ) làm nghiệm duy nhất của pt.
\(\Rightarrow\) \(x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)
\(-----------\)
Mặt khác, ta lại áp dụng bđt \(AM-GM\) loại hai cho bộ số với hai số thực không âm gồm \(\left(\frac{\alpha}{9};\frac{1}{\alpha}\right)\) , ta có:
\(A=\alpha+\frac{1}{\alpha}=\left(\frac{\alpha}{9}+\frac{1}{\alpha}\right)+\frac{8\alpha}{9}\ge2\left(\frac{\alpha}{9}.\frac{1}{\alpha}\right)^{\frac{1}{2}}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}\alpha=3\\\frac{\alpha}{9}=\frac{1}{\alpha}\end{cases}\Leftrightarrow}\) \(\alpha=3\) \(\Leftrightarrow\) \(x=\frac{21+3\sqrt{33}}{8}\)
Vậy, \(A_{min}=\frac{10}{3}\) \(\Leftrightarrow\) \(x=\frac{21+3\sqrt{33}}{8}\)
Điều kiện x>0
Đặt a = 4x2 + 9x + 18 √x +9
b = 4x√x + 4x
Từ đó ta có A = a/b + b/a >= 2
Vậy giá trị nhỏ nhất là A = 2 khi a/b = b/a
Phần còn lại bạn tự làm nha
\(x+\sqrt{2-x}\ge2\sqrt{x\sqrt{2-x}}\)
Bìa này không thể dùng cauchy bạn ạ