K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2021

Ta có: \(\left(x-1\right)^2+\left(x+y\right)^2\le9\Rightarrow x+y\le3\).

Áp dụng bất đẳng thức AM - GM ta có:

\(\dfrac{2}{x}+2x\ge2\sqrt{\dfrac{2}{x}.2x}=4;\dfrac{4}{y}+y\ge2\sqrt{\dfrac{4}{y}.y}=4\).

Do đó \(\dfrac{2}{x}\ge4-2x;\dfrac{4}{y}\ge4-y\)

\(\Rightarrow P\ge8-4\left(x+y\right)\ge-4\). (do \(x+y\le3\)).

Vậy...

Đẳng thức xảy ra khi và chỉ khi x = 1; y = 2.

13 tháng 2 2023

Đỉnh cao pạn ưi

5 tháng 6 2022

C1:

\(x,y>0\)

\(M=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}=\left(x^2+\dfrac{1}{16x^2}\right)+\left(y^2+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\)Theo BĐT AM-GM (Caushy) ta có:

\(M=\left(x^2+\dfrac{1}{16x^2}\right)+\left(y^2+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}.2\sqrt{\dfrac{1}{x^2}.\dfrac{1}{y^2}}+4=\dfrac{1}{2}+\dfrac{1}{2}+4+\dfrac{15}{4}.\dfrac{1}{xy}\ge5+\dfrac{15}{4}.\dfrac{1}{\left(\dfrac{x+y}{2}\right)^2}\ge5+\dfrac{15}{4}.\dfrac{1}{\left(\dfrac{1}{2}\right)^2}=20\)Đẳng thức xảy ra \(\left\{{}\begin{matrix}x^2=\dfrac{1}{16}x^2\\y^2=\dfrac{1}{16}y^2\\x+y=1\\x,y>0\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)

Vậy \(MinM=20\)

8 tháng 7 2021

áp dụng BDT AM-GM \(=>x+y\ge2\sqrt{xy}=>\left(x+y\right)^2\ge4xy\left(1\right)\)

mà \(x+y\le1=>\left(x+y\right)^2\le1\left(2\right)\)

(1)(2)\(=>4xy\le\left(x+y\right)^2\le1=>4xy\le1=>xy\le\dfrac{1}{4}\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\sqrt{1+x^2y^2}\ge2\sqrt{\dfrac{1+x^2y^2}{xy}}=2\sqrt{\dfrac{1}{xy}+xy}\)

\(=2\sqrt{\dfrac{1}{xy}+16xy-15xy}=2\sqrt{2\sqrt{16}-\dfrac{15}{4}}=\sqrt{17}\)

dấu"=" xảy ra<=>\(x=y=\dfrac{1}{2}\)

NV
8 tháng 7 2021

\(1\ge x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{1}{4}\Rightarrow\dfrac{1}{xy}\ge4\)

Ta có:

\(A\ge\dfrac{2}{\sqrt{xy}}.\sqrt{1+x^2y^2}=2\sqrt{\dfrac{1}{xy}+xy}=2\sqrt{\left(xy+\dfrac{1}{16xy}\right)+\dfrac{15}{16}.\dfrac{1}{xy}}\)

\(A\ge2\sqrt{2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4}=\sqrt{17}\)

\(A_{min}=\sqrt{17}\) khi \(x=y=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
16 tháng 3 2018

Lời giải:

Ta có: \(5x^2+6xy+5y^2=3(x^2+y^2+2xy)+2(x^2+y^2)\)

\(=3(x+y)^2+2(x^2+y^2)\geq 3(x+y)^2+(x+y)^2\) (theo BĐT AM-GM)

\(\Leftrightarrow 5x^2+6xy+5y^2\geq 4(x+y)^2\Rightarrow \sqrt{5x^2+6xy+5y^2}\geq 2(x+y)\)

Thực hiện tương tự với những biểu thức còn lại suy ra:

\(P\geq \frac{2(x+y)}{x+y+2z}+\frac{2(y+z)}{y+z+2x}+\frac{2(z+x)}{z+x+2y}\)

\(P\geq 2\left(\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{z+x}{z+x+2y}\right)=2\left(\frac{(x+y)^2}{(x+y+2z)(x+y)}+\frac{(y+z)^2}{(y+z+2x)(y+z)}+\frac{(z+x)^2}{(z+x+2y)(z+x)}\right)\)

Áp dụng BĐT Cauchy-Schwarz:

\(P\geq 2.\frac{(x+y+y+z+z+x)^2}{(x+y+2z)(x+y)+(y+z+2x)(y+z)+(z+x+2y)(z+x)}\)

\(\Leftrightarrow P\geq 2. \frac{4(x+y+z)^2}{2(x+y+z)^2+2(xy+yz+xz)}=\frac{4(x+y+z)^2}{(x+y+z)^2+xy+yz+xz}\)

\(\geq \frac{4(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=3\) (theo AM-GM \(xy+yz+xz\leq \frac{(x+y+z)^2}{3}\))

Vậy \(P\geq 3\Leftrightarrow P_{\min}=3\)

Dấu bằng xảy ra khi \(x=y=z\)

29 tháng 11 2021

\(1,\dfrac{1}{1+x}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Cmtt: \(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân VTV

\(\Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\dfrac{x^2y^2z^2}{\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2}}\\ \Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\dfrac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\\ \Leftrightarrow8xyz\le1\Leftrightarrow xyz\le\dfrac{1}{8}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{2}\)

29 tháng 11 2021

\(2,\\ a,2x^2+y^2-2xy=1\\ \Leftrightarrow\left(x-y\right)^2+x^2=1\\ \Leftrightarrow\left(x-y\right)^2=1-x^2\ge0\\ \Leftrightarrow x^2\le1\Leftrightarrow\sqrt{x^2}\le1\Leftrightarrow\left|x\right|\le1\)

14 tháng 7 2018

Bài 1 :

Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)

Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)