K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2021

`f(x)=x+2-4\sqrt{x-1}(x>=1)`

`=x-1-4\sqrt{x-1}+4-1`

`=(\sqrt{x-1}-2)^2-1>=-1`

Dấu "=" xảy ra khi `\sqrt{x-1}=2<=>x=5`

19 tháng 1 2021

a, \(y=\dfrac{\sqrt{x-2}}{x}=\sqrt{\dfrac{1}{x}-\dfrac{2}{x^2}}\ge0\)

\(min=0\Leftrightarrow\dfrac{1}{x}-\dfrac{2}{x^2}=0\Leftrightarrow x=2\)

b, Áp dụng BĐT Cosi:

\(f\left(x\right)=\dfrac{x}{\sqrt{x-1}}=\dfrac{x-1+1}{\sqrt{x-1}}=\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\ge2\)

\(minf\left(x\right)=2\Leftrightarrow x=2\)

NV
4 tháng 4 2021

1.

\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{2^2}{x}+\dfrac{1}{1-x}-1\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)

\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)

2.

\(f\left(x\right)=\dfrac{1}{x}+\dfrac{1}{1-x}\ge\dfrac{4}{x+1-x}=4\)

\(f\left(x\right)_{min}=4\) khi \(x=\dfrac{1}{2}\)

11 tháng 1 2022

f(x)=4x+x−1+11−x=22x+11−x−1≥(2+1)2x+1−x−1=8f(x)=4x+x−1+11−x=22x+11−x−1≥(2+1)2x+1−x−1=8

f(x)min=8f(x)min=8 khi x=23x=23

2.

f(x)=1x+11−x≥4x+1−x=4f(x)=1x+11−x≥4x+1−x=4

f(x)min=4f(x)min=4 khi x=12

13 tháng 1 2021

Đặt \(\sqrt[3]{x^2+1}=t\left(t\ge1\right)\)

\(y=f\left(t\right)=t^2-t+1\)

\(minf\left(t\right)=f\left(1\right)=1\)

\(minf\left(t\right)=1\Leftrightarrow t=1\Leftrightarrow\sqrt[3]{x^2+1}=1\Leftrightarrow x=0\)

26 tháng 2 2021

\(\Rightarrow f\left(x\right)=\dfrac{7}{4}x+\dfrac{1}{8}x+\dfrac{1}{8}x+\dfrac{8}{x^2}\)

Áp dụng bđt Cô-si :

\(\dfrac{1}{8}x+\dfrac{1}{8}x+\dfrac{8}{x^2}\ge3\sqrt[3]{\dfrac{1}{8}x\cdot\dfrac{1}{8}x\cdot\dfrac{8}{x^2}}=\dfrac{3}{2}\)

\(\Rightarrow f\left(x\right)=\dfrac{7}{4}x+\dfrac{1}{8}x+\dfrac{1}{8}x+\dfrac{8}{x^2}\ge7+\dfrac{3}{2}=\dfrac{17}{2}\)

Dấu bằng xảy ra \(\Leftrightarrow x=4\)

NV
26 tháng 2 2021

\(f\left(x\right)=\dfrac{x}{8}+\dfrac{x}{8}+\dfrac{8}{x^2}+\dfrac{7}{4}x\ge3\sqrt[3]{\dfrac{8x^2}{64x^2}}+\dfrac{7}{4}.4=\dfrac{17}{2}\)

Dấu "=" xảy ra khi \(x=4\)

28 tháng 1 2023

f. 

\(x+1>0\) và \(7-2x>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x< \dfrac{7}{2}\end{matrix}\right.\)

\(\Rightarrow\) TXĐ: \(D=(-1;\dfrac{7}{2})\)

g.

\(x+1>0\) và \(x^2-4\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x\ne2\\x\ne-2\end{matrix}\right.\)

\(\Rightarrow\) TXĐ: \(D=\left(-1;+\infty\right)\backslash2\)

 

h: ĐKXĐ: |x+1|-|x-2|<>0

=>|x+1|<>|x-2|

=>x-2<>x+1 và x+1<>-x+2

=>2x<>1

=>x<>1/2

g: ĐKXĐ: x+1>0 và x+2>=0 và x^2-4<>0

=>x>-2 và x>-1 và x<>2; x<>-2

=>x>-1; x<>2

f: ĐKXĐ: x+1>=0 và 7-2x>=0 và x+1<>7-2x

=>3x<>6 và -1<=x<=7/2

=>x<>2 và -1<=x<=7/2

NV
21 tháng 3 2021

Do \(\left\{{}\begin{matrix}x\ge-1\Rightarrow x+1\ge0\\\sqrt{x^2+1}>0\end{matrix}\right.\) \(\Rightarrow y\ge0\)

\(y_{min}=0\) khi \(x=-1\)

Lại có: \(y^2=\dfrac{\left(x+1\right)^2}{x^2+1}=\dfrac{x^2+2x+1}{x^2+1}=\dfrac{2\left(x^2+1\right)-x^2+2x-1}{x^2+1}=2-\dfrac{\left(x-1\right)^2}{x^2+1}\le2\)

\(\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\) khi \(x=1\)

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Lời giải:

Áp dụng BĐT Mincopxky:

\(y=\sqrt{x^2+4x+8}+\sqrt{x^2-4x+8}=\sqrt{(x+2)^2+4}+\sqrt{(x-2)^2+4}\)

\(=\sqrt{(x+2)^2+2^2}+\sqrt{(2-x)^2+2^2}\geq \sqrt{(x+2+2-x)^2+(2+2)^2}\)

\(=\sqrt{32}=4\sqrt{2}\)

Vậy $y_{\min}=4\sqrt{2}$ khi $x=0$

25 tháng 10 2021

a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)

b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)

c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(2x + 7 \ge 0,\)tức là khi \(x \ge \frac{{ - 7}}{2}.\)

Vậy tập xác định của hàm số này là \(D = \left[ { - \frac{7}{2}; + \infty )} \right.\)

b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \({x^2} - 3x + 2 \ne 0,\)tức là khi \(x \ne 2,x \ne 1.\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}\backslash \left\{ {1;2} \right\}\)