K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=\left(x+2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-2

1 tháng 1 2022

\(C=x^2+4x+7=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-2

Vậy \(C_{min}=3\Leftrightarrow x=-2\)

\(D=x^2+6x+15=\left(x^2+6x+9\right)+6=\left(x+3\right)^2+6\ge6\)

Dấu '=' xảy ra khi x=-3

Vậy\(D_{min}=6\Leftrightarrow x=-3\)

20 tháng 7 2017

A=x2-4x+7

= x2-4x+4+3

= (x-2)2+3

Vì (x+2)2>0

Nên (x-2)2+3>/3

Vậy MAX của A=3 khi x-2=0 => x=2

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

1: A=(x-1)^2>=0

Dấu = xảy ra khi x=1

5: B=-(x^2+6x+10)

=-(x^2+6x+9+1)

=-(x+3)^2-1<=-1

Dấu = xảy ra khi x=-3

2: B=x^2+4x+4-9

=(x+2)^2-9>=-9

Dấu = xảy ra khi x=-2

6: =-(x^2-5x-3)

=-(x^2-5x+25/4-37/4)

=-(x-5/2)^2+37/4<=37/4

Dấu = xảy ra khi x=5/2

3: =x^2+x+1/4-1/4

=(x+1/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=-1/2

7: =4x^2+4x+1-2

=(2x+1)^2-2>=-2

Dấu = xảy ra khi x=-1/2

21 tháng 7 2021

`A=(2x)^2+2.2x.1+1^2+1=(2x+1)^2+1`

`=> A_(min)=1 <=>x=-1/2`

`B=(\sqrt2x)^2-2.\sqrt2 x . \sqrt2/2 + (\sqrt2/2)^2 + 1/2`

`=(\sqrt2x-\sqrt2/2)^2+1/2`

`=> B_(min)=1/2 <=> x=1/2`

`C=-(x^2-2.x.3+3^2+6)=-(x-3)^2-6`

`=> C_(max)=-6 <=> x=3`

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

AH
Akai Haruma
Giáo viên
21 tháng 7 2021

Lời giải:
$C=-15-x^2+6x=-6-(x^2-6x+9)=-6-(x-3)^2$

Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow C\leq -6< 0$

Vậy $C$ luôn âm.

 

24 tháng 8 2020

a,\(x^2+4x+7=x^2+4x+4+3=\left(x+2\right)^2+3\ge3\)

Dấu = xảy ra \(< =>x+2=0< =>x=-2\)

Vậy \(A_{min}=3\)khi \(x=-2\)

b,\(4x^2+4x+6=\left(2x\right)^2+4x+1+5=\left(2x+1\right)^2+5\ge5\)

Dấu = xảy ra \(< =>2x+1=0< =>x=-\frac{1}{2}\)

Vậy \(B_{min}=5\)khi \(x=-\frac{1}{2}\)

c,\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)

Vậy \(C_{min}=\frac{3}{4}\)khi \(x=-\frac{1}{2}\)

d,\(2x^2-6x=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu = xảy ra \(< =>x-\frac{3}{2}=0< =>x=\frac{3}{2}\)

Vậy \(D_{min}=-\frac{9}{2}\)khi \(x=\frac{3}{2}\)

   
24 tháng 8 2020

A=x2+4x+4+3=(x+2)2+3

Bài 2: 

a: \(A=x^2+8x\)

\(=x^2+8x+16-16\)

\(=\left(x+4\right)^2-16\ge-16\)

Dấu '=' xảy ra khi x=-4

b: \(B=-2x^2+8x-15\)

\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=-2\left(x-2\right)^2-7\le-7\)

Dấu '=' xảy ra khi x=2

c: \(C=x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=2

e: \(E=x^2-6x+y^2-2y+12\)

\(=x^2-6x+9+y^2-2y+1+2\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=3 và y=1