Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=9x^2-12x=\left(9x^2-12x+4\right)-4=\left(3x-2\right)^2-4\ge-4\)Vậy \(Min_B=-4\) khi \(3x-2=0\Rightarrow3x=2\Rightarrow x=\dfrac{2}{3}\)
\(D=3-10x^2-4xy-4y^2=3-\left(3x\right)^2-\left(x^2+4xy+4y^2\right)=3-\left(3x\right)^2-\left(x+2y\right)^2\le3\)Vậy \(Max_D=3\) khi \(\left[{}\begin{matrix}3x=0\\x+2y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Bài 1:
a. $M=x^2+4x+9=(x^2+4x+4)+5=(x+2)^2+5\geq 0+5=5$ do $(x+2)^2\geq 0$ với mọi $x$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+2=0\Leftrightarrow x=-2$
b.
$N=x^2-20x+101=(x^2-20x+10^2)+1=(x-10)^2+1\geq 1$ do $(x-10)^2\geq 0$ với mọi $x$
Vậy $N_{\min}=1$. Giá trị này đạt tại $x-10=0\Leftrightarrow x=10$
Bài 2:
a.
$C=-y^2+6y-15$
$-C=y^2-6y+15=(y^2-6y+9)+6=(y-3)^2+6\geq 6$ (do $(y-3)^2\geq 0$ với mọi $y$)
$\Rightarrow C\leq -6$
Vậy $C_{\max}=-6$. Giá trị này đạt tại $y-3=0\Leftrightarrow y=3$
b.
$-B=x^2-9x+12=(x^2-9x+4,5^2)-8,25=(x-4,5)^2-8,25\geq -8,25$ do $(x-4,5)^2\geq 0$ với mọi $x$
$\Rightarrow B\leq 8,25$
Vậy $B_{\max}=8,25$. Giá trị này đạt tại $x-4,5=0\Leftrightarrow x=4,5$
Phần 1:
Ta thấy: \(B=x^2+2xy+y^2+16=\left(x+y\right)^2+16\)
Do \(\left(x+y\right)^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(x+y\right)^2+16\ge16\) ( mọi x và y )
=> GTNN của biểu thức \(B=\left(x+y\right)^2+16\) bằng 16 khi và chỉ khi:
\(\left(x+y\right)^2=0\)
\(\Rightarrow x+y=0\)
\(\Rightarrow x=-y\)
Vậy GTNN của biểu thức \(B=x^2+2xy+y^2+16\) bằng 16 khi và chỉ khi \(x=-y\).
Phần 2:
Ta thấy: \(C=9x^2+6x+y^2+16=9x^2+6x+1+y^2+15=\left(3x+1\right)^2+y^2+15\)
Do \(\left(3x+1\right)^2\ge0\) ( mọi x )
\(y^2\ge0\) ( mọi y )
\(\Rightarrow\left(3x+1\right)^2+y^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(3x+1\right)^2+y^2+15\ge15\) ( mọi x và y )
=> GTNN của \(C=\left(3x+1\right)^2+y^2+15\) bằng 15 khi và chỉ khi:
\(\left(3x+1\right)^2+y^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x+1\right)^2=0\\y^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+1=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=0\end{cases}}\)
Vậy GTNN của biểu thức \(C=9x^2+6x+y^2+16\) bằng 15 khi và chỉ khi \(x=\frac{-1}{3}\) ; \(y=0\).
a) \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(A=\left(x^2+5x\right)^2-6^2\)
\(A=\left(x^2+5x\right)^2-36\)
Vì \(\left(x^2+5x\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow Amin=-36\Leftrightarrow x^2+5x=0\)
\(\Rightarrow x\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b) \(B=x^2-2x+y^2+4y+8\)
\(B=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+3\)
\(B=\left(x-1\right)^2+\left(y+2\right)^2+3\)
Vì \(\left(x-1\right)^2\ge0\) với mọi x
\(\left(y+2\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\) với mọi x,y
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)
\(\Rightarrow Bmin=3\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
c) \(C=x^2-4x+y^2-8y+6\)
\(C=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(C=\left(x-2\right)^2+\left(y-4\right)^2-14\)
Vì \(\left(x-2\right)^2\ge0\) với mọi x
\(\left(y-4\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) với mọi x,y
\(\Rightarrow Cmin=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Trả lời:
1, \(P=9x^2-7x+2=9\left(x^2-\frac{7}{9}x+\frac{2}{9}\right)=9\left[\left(x^2-2x\frac{7}{18}+\frac{49}{324}\right)+\frac{23}{324}\right]\)
\(=9\left[\left(x-\frac{7}{18}\right)^2+\frac{23}{324}\right]=9\left(x-\frac{7}{18}\right)^2+\frac{23}{36}\)
Ta có: \(9\left(x-\frac{7}{18}\right)^2\ge0\forall x\)
\(\Leftrightarrow9\left(x-\frac{7}{18}\right)^2+\frac{23}{26}\ge\frac{23}{26}\forall x\)
Dấu "=" xảy ra khi \(x-\frac{7}{18}=0\Leftrightarrow x=\frac{7}{18}\)
Vậy GTNN của P = 23/36 khi x = 7/18
Đề đúng: \(C=x^2+4y^2+2x-4y-4xy+2011\)
\(C=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+2010\)
\(C=\left(x-2y\right)^2+2\left(x-2y\right)+1+2010\)
\(C=\left(x-2y+1\right)^2+2010\ge2010\)
Dấu "=" xảy ra khi: \(\left(x-2y+1\right)^2=0\)
=> Ta có vô số cặp (x;y) thỏa mãn ví dụ như:
(1;1) ; (-1;0) ; (3;2) ; ...
C = x2 + 4y2 + 2x - 4y - 4xy + 2011 ( đúng chưa :v )
C = [ ( x2 - 4xy + 4y2 ) + 2x - 4y + 1 ] + 2010
C = [ ( x - 2y )2 + 2( x - 2y ) + 1 ] + 2010
C = [ ( x - 2y ) + 1 ]2 + 2010
C = ( x - 2y + 1 )2 + 2010 ≥ 2010 ∀ x,y
Đẳng thức xảy ra <=> x - 2y + 1 = 0
<=> x - 2y = -1
<=> x = 2y - 1
=> MinC = 2011 <=> x = 2y - 1