Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Bài 1: a,
\(A=\left|x-1\right|+3\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)
Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)
Vậy GTNN của A = 3 khi x = 1
\(B=\left|x-7\right|-4\)
Vì \(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)
Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)
Vậy GTNN của B = -4 khi x = 7
b, \(C=-\left|x-3\right|+2\)
Vì \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow-\left|x-3\right|\le0\forall x\)
\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)
Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)
Vậy GTLN của C = 2 khi x = 3
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
A= |x-10| + 2018
vi |x -10| ≥ 0 voi moi x
=> |x-10| + 2018 ≥ 2018 voi moi x
DAu "=" xay ra khi
=>x-10= 0
=>x=0+10
=>x=10
vay GTNN cua A =2018
B= /x-3/+/y+2/+17
vi |x-3| ≥ voi moi x
|y+2| ≥ voi moi y
=>|x-3| + |y+2| +17 ≥ 17 voi moi x ,y
dau " =" xay ra khi
\(\hept{\begin{cases}x-3=0\\y+2=0\end{cases}}\)=>\(\hept{\begin{cases}x=0+3\\y=0-2\end{cases}}\)
=>\(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
vay GTNN cua B= 17 khi \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
a/ A = x2 + (y - 1)4 - 3
Do x2\(\ge\) 0 và (y - 1)4\(\ge\)0
=> A = x2 + (y - 1)4 - 3 \(\ge\)-3
Đẳng thức xảy ra khi: x = 0 và y - 1 = 0 => x = 0 và y = 1
Vậy GTNN của A là -3 khi x = 0 và y = 1
b/ B = 3(x2 - 7) + 2016 = 3x2 - 21 + 2016 = 3x2 + 1995
Mà: 3x2\(\ge\)0 => B = 3x2 + 1995 \(\ge\)1995
Đẳng thức xảy ra khi: 3x2 = 0 => x = 0
Vậy GTNN của B là 1995 khi x = 0
c/ C = (2x + 3)(x - 5) - x(x - 7) = 2x2 - 10x + 3x -15 - (x2 - 7x) = 2x2 - 7x -15 - x2 + 7x = (2x2 -x2) + (-7x + 7x) - 15 = x2 -15
Mà: x2\(\ge\)0 => x2 - 15\(\ge\)-15
Đẳng thức xảy ra khi: x2 = 0 => x = 0
Vậy GTNN cảu C là -15 khi x = 0