Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dạng bài này bn có thể dùng miền giá trị hàm để tách nhé(cái này chỉ làm nháp thôi)
(Chú ý phương trình bậc 2 :ax2+bx+c=0.Phương trình có \(\Delta=b^2-4ac\)(\(\Delta\)là biệt số Đen-ta)
Nếu \(\Delta\ge0\)thì pt có 2 nghiệm
Nếu \(\Delta< 0\)thì pt vô nghiệm
Bài làm
Gọi m là 1 giá trị của \(\frac{x^2-x+1}{x^2+x+1}\)
Ta có m= \(\frac{x^2-x+1}{x^2+x+1}\)
=>m(x2+x+1)=x2-x+1
=>mx2+mx+m-x2+x-1=0 =>(m-1)x2 +(m+1)x+m-1=0(1)
Nếu m=0..............(th này ko phải xét)
Nếu m\(\ne0\)thì pt (1) có nghiệm khi \(\Delta=b^2-4ac\ge0\)
\(\Leftrightarrow\left(m+1\right)^2-4.\left(m-1\right)\left(m-1\right)\ge0\)
\(\Leftrightarrow m^2+2m+1-4m^2+8m-4\ge0\)
\(\Leftrightarrow-3m^2+10m-3\ge0\)\(\Leftrightarrow3m^2-10m+3\le0\)
\(\Leftrightarrow\left(m-3\right)\left(3m-1\right)\le0\)
=> có 2 TH
TH1: m-3\(\le0\)và\(3m-1\ge0\)
=>\(\hept{\begin{cases}m\le3\\m\ge\frac{1}{3}\end{cases}\Leftrightarrow\frac{1}{3}\le m\le3}\)(t/m)(*)
TH2\(\hept{\begin{cases}m-3\ge0\\3m-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge3\\m\le\frac{1}{3}\end{cases}}}\)(vô lí)(**)
Từ (*),(**) =>\(\frac{1}{3}\le m\le3\)
=>\(\hept{\begin{cases}Min_P=\frac{1}{3}\\Max_P=3\end{cases}}\)
Từ đây bạn tách ngược từ dưới lên.
Nếu ko biết thì nhắn tin cho mk ,mk tách cho
tk mk nha
\(G=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}\)
\(=1-\frac{2}{x^2+1}\)
Ta có: \(x^2\ge0\)
\(\Rightarrow x^2+1\ge1\)
\(\Rightarrow\frac{2}{x^2+1}\le2\)
\(\Rightarrow-\frac{2}{x^2+1}\ge-2\)
\(\Rightarrow1-\frac{2}{x^2+1}\ge-1\)
Vậy \(G_{min}=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\)
P(x^2+x+1)=x^2-x+1
=>Px^2+Px+P-x^2+x-1=0
=>(Px^2-x^2)+(Px+x)+(P-1)=0
=>x^2(P-1)+x(P+1)+(P-1)=0 (1)
coi đây là 1 pt bậc 2 ẩn x ,để P tổn tại max min thì phải có x thoả mãn max,min đó,tức là (1) có nghiệm
Xét delta = (P+1)^2-4(P-1)^2 >/ 0 =>P^2+2P+1-4(P^2-2P+1)=P^2+2P+1-4P^2+8P-4=-3P^2+10P-3
=(P-3)(1-3P) >/ 0 => 1/3<=P<=3 => minP=1/3,maxP=3
\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)
\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)
\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)
Đẳng thức xảy ra khi x =0
Tí làm tiếp
Hiện tại tớ chưa tìm được cách nào hay hơn (Cách này thường là lớp 6 dùng)
Ta có \(\sqrt{6-x^2}\ge0\Rightarrow2 +\sqrt{6-x^2}\ge2\)
Vậy để \(\frac{1}{2+\sqrt{6-x^2}}\) có giá trị lớn nhất thì \(2+\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow6-x^2\) có giá trị bé nhất mà số đó lại lớn hơn 0 \(\Rightarrow x=\sqrt{6}\).
Vậy giá trị lớn nhất là \(\frac{1}{2}\)
Tương tự thì để giá trị bé nhất thì \(2+\sqrt{6-x^2}\) có giá trị lớn nhất và giá trị này = \(\frac{1}{2+\sqrt{6}}\)
Như Nam có câu trả lời hay đó !!!
Vừa zễ hiểu, vừa zễ làm !
Thanks
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{8x}{x^2-1}\right):\left(\frac{2x-2x^2-6}{x^2-1}-\frac{2}{x-1}\right)\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{8x}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{2x-2x^2-6}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1-8x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2x-2x^2-6-2x-2}{\left(x+1\right)\left(x-1\right)}\right)\)
\(A=\left(\frac{4x-8x}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)\left(x+1\right)}{-2x^2-8}\)
..........
\(\frac{x+32}{2008}+\frac{x+31}{2009}+\frac{x+29}{2011}+\frac{x+28}{2012}+\frac{x+2056}{4}=0\) \(=0\)
\(\Leftrightarrow\)\(\frac{x+32}{2008}+1+\frac{x+31}{2009}+1+\frac{x+29}{2011}+1\)\(+\frac{x+28}{2012}+1+\frac{x+2056}{4}-4\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+32}{2008}+\frac{2008}{2008}+\frac{x+31}{2009}+\frac{2009}{2009}+\)\(\frac{x+29}{2011}+\frac{2011}{2011}+\frac{x+28}{2012}+\frac{2012}{2012}+\)\(\frac{x+2056}{4}-\frac{16}{4}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+32+2008}{2008}+\frac{x+31+2009}{2009}\)\(+\frac{x+29+2011}{2011}+\frac{x+28+2012}{2012}\)\(+\frac{x+2056-16}{4}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+2040}{2008}+\frac{x+2040}{2009}+\frac{x+2040}{2011}\)\(+\frac{x+2040}{2012}+\frac{x+2040}{4}=0\)
\(\Leftrightarrow\)\(\left(x+2040\right).\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+2040=0\\\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}=0\end{cases}}\)(vô lí)
\(\Leftrightarrow\)\(x=-2040\)
Vậy phương trình có nghiệm là : x = -2040
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
\(\frac{x^2-x-1+2}{x^2-x-1}\)
\(1+\frac{2}{x^2-x-1}\)
để p min thì \(x^2-x-1\)max
xét x <1 thì P âm
xét x>1 thì P dg
tử ko đổi mẫu và tử dg suy ra \(x^2-x-1\)= -1
suy ra \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
anh có thể tự giải tiieps ạ
e học lớp 7 ạ
Xét đa thức p ta có
p=1+2/x^2-x-1
Để p đạt gtnn thi x^2-x-1<0
Ta lại có x^2-x-1=(x-1/2)^2-5/6<=-5/6 tương đương x=1/2 thì (x-1/2)^2-5/6=-5/6
Vậymin p=-7/5 khi x=1/2