Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).
b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)
Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).
a) \(6x-x^2-11\)
\(=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-[\left(x-3\right)^2+2]\)
Mà: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow-\left(x-3\right)^2\le0\)
\(\Rightarrow-\left(x-3\right)^2-2\le0-2\)
\(\Rightarrow A\le-2\)
Dấu '' = '' xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy giá trị lớn nhất của biểu thức \(6x-x^2-11=-2\) khi \(x=3\)
b) \(x^2-5x-2\)
\(=\left(x^2-2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{33}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\)
Mà: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge\frac{-33}{4}\forall x\)
Dấu '' = '' xảy ra khi: \(x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)
Vậy giá trị nhỏ nhất của biểu thức \(x^2-5x-2=\frac{-33}{4}\) khi \(x=\frac{5}{2}\)
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)
\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)
Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)
\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)
Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)
\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)
Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)
\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
a)\(x^2-6x+11\)
\(=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
Dấu "="xảy ra khi x=3
b)\(-x^2+6x-11\)
\(=-\left(x^2-6x+9\right)-2\)
\(=-\left(x-3\right)^2-2\le-2\)
Dấu "=" xảy ra khi x=3
Ta có:
\(-x^2-6x-11=-\left(x^2+6x+11\right)=-\left(x^2+6x+9+2\right)\)
\(=-\left(x+3\right)^2-2\)
Vì \(-\left(x+3\right)^2\le0\)với mọi x.
Dấu "=" xảy ra \(\Leftrightarrow x=-3\)
\(\Rightarrow-\left(x+3\right)^2-2\le-2\)với mọi x.
Vậy GTLN của biểu thức là -2 khi và chỉ khi x = -3
Ta có: \(-x^2-6x-11=-x^2-6x-9-2\)
\(=-\left(x^2+6x+9\right)^2-2\)
\(=-\left(x+3\right)^2-2\)
Vì \(-\left(x+3\right)^2\le0\forall x\)
\(\Rightarrow\) \(-\left(x+3\right)^2-2\le-2\forall x\)
Dấu = xảy ra khi \(-\left(x+3\right)^2=0\) \(\Rightarrow\)\(x=-3\)
Vậy GTLN của biểu thức là -2 tại x=-3
A=9x2+6x+11=(9x2+6x+1)+10=(3x+1)2+10
\(3x+1\ge0\)
=>GTNN của biểu thức A là 10
A=9x2+6x+11
=9x2 +6x+1-1+11
=(3x+1)2+10
Do (3x+1)2\(\ge\)0 \(\forall\)x
=>(3x+1)2+10\(\ge\) 10
=>A\(\ge\) 10
GTNN A=10 khi 3x+1=0
=> 3x=-1
=> x=-\(\dfrac{1}{3}\)