K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2023

`P=(x^2+2x+2)/(x^2+2x+3)`

`=> P=(x^2+2x+3-1)/(x^2+2x+3)`

`=> P=1-1/(x^2+2x+3)`

Để `P_(min)` thì `1/(x^2+2x+3)` lớn nhất

`=> x^2+2x+3` nhỏ nhất

Ta có: `x^2+2x+3`

`=x^2+2x+1+2`

`= (x+1)^2+2≥2∀x`

`<=> 1/(x^2+2x+3) ≤1/2 ∀x`

`<=> P_(min)=1-1/2=1/2`

Vậy `P_(min)=1/2` khi `(x+1)^2+2=2 <=>x=-1`

 

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

A = |x-7| + |x-5| = |7-x| + |x-5| ≥ |7-x + x-5| = 2 

minA = 2 
đạt khi 7-x và x-5 cùng dấu <=> (7-x)(x-5) ≥ 0 <=> 5 ≤ x ≤ 7 

B = (2x-1)² - 3|2x-1| + 2 = |2x-1|² - 2.|2x-1|.(3/2) + 9/4 + 2 - 9/4 

B = (|2x-1| - 3/2)² - 1/4 ≥ -1/4 

minB = -1/4 
đạt khi: |2x-1| = 3/2 <=> 2x-1 = 3/2 hoặc 2x-1 = -3/2 <=> x = 5/4 hoặc x = -1/4 

C = |x² + x + 1| + |x² + x -12| = |x² + x + 1| + |12 - x² - x | ≥ 

≥ |x² + x + 1 + 12 - x² - x| = |13| = 13 

minC = 13 

đạt khi (x² + x +1) và (12 - x² - x) cùng dấu 
<=> (x²+x+1)(12-x²-x) ≥ 0 <=> -1 ≤ x²+x ≤ 12 <=> 
{x² + x + 1 ≥ 0 
{x² + x -12 ≤ 0 
<=> 
(x + 4)(x - 3) ≤ 0 <=> -4 ≤ x ≤ 3 
tóm lại: 
minC = 13 đạt khi -4 ≤ x ≤ 3 

học tốt

17 tháng 1 2018

Ta có: \(M=\frac{x^2+2x+3}{x^2+2}=\frac{2.\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}\)

                                                  \(=\frac{2.\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)

Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy Mmax = 2 khi x = 1

6 tháng 10 2019

a)x2-2x+m= (x-1)2+m-1 \(\ge m-1\) Min =2 => m-1 = 2 <=> m = 3

b) = 4x2-2x+6x+m= 4x2+4x+m = (2x+1)2+m-1 \(\ge m-1\) Min=1998 <=> m-1 = 1998 <=> m = 1999

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

26 tháng 12 2018

\(A=\frac{x^2+2x+3}{x^2+2}\)

\(A=\frac{x^2+2+2x+1}{x^2+2}\)

\(A=\frac{x^2+2}{x^2+2}+\frac{2x+1}{x^2+2}\)

\(A=1+\frac{x^2+2-x^2+2x-1}{x^2+2}\)

\(A=1+\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}\)

\(A=1+1-\frac{\left(x-1\right)^2}{x^2+2}\)

\(A=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

26 tháng 12 2018

\(A=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{\left(x^2+4x+4\right)+\left(x^2+2\right)}{2\left(x^2+2\right)}=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}+\frac{1}{2}\ge\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+2=0\Leftrightarrow x=-2\)

Vậy GTNN của A là \(\frac{1}{2}\) khi x = -2

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

25 tháng 3 2018

\(\left(x^2-2x\right)\left(x^2-2x+2\right)=\left(x^2-2x+1-1\right)\left(x^2-2x+1+1\right).\)

\(=\left[\left(x-1\right)^2-1\right]\left[\left(x-1\right)^2+1\right]\)

\(=\left(x-1\right)^4-1\ge0-1=-1\)

Vậy GTNN của biểu thức là -1