Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(A=\frac{2x+1}{x^2+3}\)
\(\Leftrightarrow Ax^2+3A=2x+1\)
\(\Leftrightarrow Ax^2-2x+3A-1=0\)
Có \(\Delta'=1-A\left(3A-1\right)\)
\(=1-3A^2+A\)
Pt có nghiệm khi \(\Delta'\ge0\Leftrightarrow-3A^2+A+1\ge0\)
\(\Leftrightarrow\frac{1-\sqrt{13}}{6}\le A\le\frac{1+\sqrt{13}}{6}\)
Nên \(A_{min}=\frac{1-\sqrt{13}}{6}\)
Dấu "=" \(\Leftrightarrow\frac{2x+1}{x^2+3}=\frac{1-\sqrt{13}}{6}\)
Giải ra tìm đc x
Vậy .............
\(A=\frac{3x^2-2x+3}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=3x^2-2x+3\)
\(\Leftrightarrow Ax^2+A-3x^2+2x-3=0\)
\(\Leftrightarrow x^2\left(A-3\right)+2x+\left(A-3\right)=0\)
\(\Delta'=1-\left(A-3\right)^2\ge0\Leftrightarrow\left(1+A-3\right)\left(1-A+3\right)\ge0\)
\(\Leftrightarrow\left(4-A\right)\left(A-2\right)\ge0\Leftrightarrow2\le A\le4\)
Ta có : \(\frac{x^2-3x+3}{x^2-2x+1}=\frac{\left(x^2-2x+1\right)-x+1+1}{\left(x-1\right)^2}\)\(=\frac{\left(x-1\right)^2-\left(x-1\right)+1}{\left(x-1\right)^2}=\frac{1}{\left(x-1\right)^2}-\frac{1}{x-1}+1\)
\(=\frac{1}{\left(x-1\right)^2}-2.\frac{1}{x-1}.\frac{1}{2}+\frac{1}{4}-\frac{3}{4}\)
\(=\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà : \(\left(\frac{1}{x-1}-\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Vậy GTNN của biểu thức là : \(\frac{3}{4}\) khi và chỉ khi x = 3
\(A=\frac{1}{2017}-\frac{2}{2017x}+\frac{1}{x^2}=\left(\frac{1}{2017}-\frac{1}{x}\right)^2+\frac{1}{2017}-\frac{1}{2017^2}=\left(\frac{1}{2017}-\frac{1}{x}\right)^2+\frac{2016}{2017^2}\)
\(\Rightarrow A\ge\frac{2016}{2017^2}\)Dấu "=" xảy ra khi \(\left(\frac{1}{2017}-\frac{1}{x}\right)^2=0\Rightarrow x=2017\)
Vây ......
\(A=\frac{1}{4}\left(x+2\right)^2-2\ge-2\)
\(A_{min}=-2\) khi \(x=-2\)
Với 2 câu B, C cần kiến thức lớp 9 để làm:
\(Bx^2+2Bx+3B=x^2-2x+2\)
\(\Leftrightarrow\left(B-1\right)x^2+2\left(B+1\right)x+3B-2=0\)
\(\Delta'=\left(B+1\right)^2-\left(B-1\right)\left(3B-2\right)\ge0\)
\(\Leftrightarrow2B^2-7B+1\le0\Rightarrow\frac{7-\sqrt{41}}{4}\le B\le\frac{7+\sqrt{41}}{4}\)
\(B_{min}=\frac{7-\sqrt{41}}{4}\) khi \(x=\frac{\sqrt{41}-1}{4}\)
\(2Cx^2+4Cx+9C=x^2-2x-1\)
\(\Leftrightarrow\left(2C-1\right)x^2+2\left(2C+1\right)x+9C+1=0\)
\(\Delta'=\left(2C+1\right)^2-\left(2C-1\right)\left(9C+1\right)\ge0\)
\(\Leftrightarrow14C^2-11C-2\le0\Rightarrow\frac{11-\sqrt{233}}{28}\le C\le\frac{11+\sqrt{233}}{28}\)
\(C_{min}=\frac{11-\sqrt{233}}{28}\) khi \(x=\frac{\sqrt{233}-11}{8}\)
\(A=\frac{x^2+2x+3}{x^2+2}\)
\(A=\frac{x^2+2+2x+1}{x^2+2}\)
\(A=\frac{x^2+2}{x^2+2}+\frac{2x+1}{x^2+2}\)
\(A=1+\frac{x^2+2-x^2+2x-1}{x^2+2}\)
\(A=1+\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}\)
\(A=1+1-\frac{\left(x-1\right)^2}{x^2+2}\)
\(A=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{\left(x^2+4x+4\right)+\left(x^2+2\right)}{2\left(x^2+2\right)}=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}+\frac{1}{2}\ge\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của A là \(\frac{1}{2}\) khi x = -2