K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

Có \(A=\frac{2x+1}{x^2+3}\)

\(\Leftrightarrow Ax^2+3A=2x+1\)

\(\Leftrightarrow Ax^2-2x+3A-1=0\)

Có \(\Delta'=1-A\left(3A-1\right)\)

         \(=1-3A^2+A\)

Pt có nghiệm khi \(\Delta'\ge0\Leftrightarrow-3A^2+A+1\ge0\)

                                        \(\Leftrightarrow\frac{1-\sqrt{13}}{6}\le A\le\frac{1+\sqrt{13}}{6}\)

Nên \(A_{min}=\frac{1-\sqrt{13}}{6}\)

Dấu "=" \(\Leftrightarrow\frac{2x+1}{x^2+3}=\frac{1-\sqrt{13}}{6}\)

Giải ra tìm đc x

Vậy .............

14 tháng 3 2019

\(A=\frac{3x^2-2x+3}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=3x^2-2x+3\)

\(\Leftrightarrow Ax^2+A-3x^2+2x-3=0\)

\(\Leftrightarrow x^2\left(A-3\right)+2x+\left(A-3\right)=0\)

\(\Delta'=1-\left(A-3\right)^2\ge0\Leftrightarrow\left(1+A-3\right)\left(1-A+3\right)\ge0\)

\(\Leftrightarrow\left(4-A\right)\left(A-2\right)\ge0\Leftrightarrow2\le A\le4\)

26 tháng 12 2018

\(A=\frac{x^2+2x+3}{x^2+2}\)

\(A=\frac{x^2+2+2x+1}{x^2+2}\)

\(A=\frac{x^2+2}{x^2+2}+\frac{2x+1}{x^2+2}\)

\(A=1+\frac{x^2+2-x^2+2x-1}{x^2+2}\)

\(A=1+\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}\)

\(A=1+1-\frac{\left(x-1\right)^2}{x^2+2}\)

\(A=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

26 tháng 12 2018

\(A=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{\left(x^2+4x+4\right)+\left(x^2+2\right)}{2\left(x^2+2\right)}=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}+\frac{1}{2}\ge\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+2=0\Leftrightarrow x=-2\)

Vậy GTNN của A là \(\frac{1}{2}\) khi x = -2

30 tháng 6 2017

Ta có : \(\frac{x^2-3x+3}{x^2-2x+1}=\frac{\left(x^2-2x+1\right)-x+1+1}{\left(x-1\right)^2}\)\(=\frac{\left(x-1\right)^2-\left(x-1\right)+1}{\left(x-1\right)^2}=\frac{1}{\left(x-1\right)^2}-\frac{1}{x-1}+1\)

\(=\frac{1}{\left(x-1\right)^2}-2.\frac{1}{x-1}.\frac{1}{2}+\frac{1}{4}-\frac{3}{4}\)

\(=\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà : \(\left(\frac{1}{x-1}-\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Vậy GTNN của biểu thức là : \(\frac{3}{4}\) khi và chỉ khi x = 3

30 tháng 7 2019

a) \(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{x^2-1}\)

\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(2x-3\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2-x-3}{\left(x-1\right)\left(x+1\right)}\)

\(B=\frac{\left(x^2-x\right)+\left(2x^2+2x-3x-3\right)-\left(2x^2-x-3\right)}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x^2-x}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x}{x+1}\)

30 tháng 7 2019

MÌnh nghĩ đề câu b là với x>-4 mới đúng chứ

\(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{\left(x^2-1\right)}.\)

\(=\frac{x\left(x-1\right)+\left(2x-3\right)\left(x+1\right)-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)

\(\Rightarrow A.B=\frac{x}{\left(x+1\right)}.\frac{x\left(x+1\right)}{\left(x-2\right)}=\frac{x^2}{\left(x-2\right)}=\frac{x^2-4+4}{\left(x-2\right)}\)

\(=\frac{\left(x-2\right)\left(x+2\right)+4}{\left(x-2\right)}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)

Áp dụng BĐT Cô - Si cho 2 số dương \(x-2;\frac{4}{x-2}\)ta có :

\(x-2+\frac{4}{x-2}\ge2\sqrt{\frac{\left(x-2\right).4}{x-2}}=2\sqrt{4}=4\)

\(\Rightarrow x-2+\frac{4}{x-2}\ge4\Rightarrow x-2+\frac{4}{x-2}+4\ge8\)

Hay \(S_{min}=4\Leftrightarrow x-2=\frac{4}{x-2}\)

\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)}=\frac{4}{x-2}\Rightarrow x^2+4x+4=4\)

\(\Rightarrow x^2+4x=0\Rightarrow x\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)\(\Rightarrow...\)

NV
3 tháng 10 2020

\(A=\frac{1}{4}\left(x+2\right)^2-2\ge-2\)

\(A_{min}=-2\) khi \(x=-2\)

Với 2 câu B, C cần kiến thức lớp 9 để làm:

\(Bx^2+2Bx+3B=x^2-2x+2\)

\(\Leftrightarrow\left(B-1\right)x^2+2\left(B+1\right)x+3B-2=0\)

\(\Delta'=\left(B+1\right)^2-\left(B-1\right)\left(3B-2\right)\ge0\)

\(\Leftrightarrow2B^2-7B+1\le0\Rightarrow\frac{7-\sqrt{41}}{4}\le B\le\frac{7+\sqrt{41}}{4}\)

\(B_{min}=\frac{7-\sqrt{41}}{4}\) khi \(x=\frac{\sqrt{41}-1}{4}\)

\(2Cx^2+4Cx+9C=x^2-2x-1\)

\(\Leftrightarrow\left(2C-1\right)x^2+2\left(2C+1\right)x+9C+1=0\)

\(\Delta'=\left(2C+1\right)^2-\left(2C-1\right)\left(9C+1\right)\ge0\)

\(\Leftrightarrow14C^2-11C-2\le0\Rightarrow\frac{11-\sqrt{233}}{28}\le C\le\frac{11+\sqrt{233}}{28}\)

\(C_{min}=\frac{11-\sqrt{233}}{28}\) khi \(x=\frac{\sqrt{233}-11}{8}\)

20 tháng 2 2018

a) Từ giả thiết : \(a^2+2c^2=3b^2+19\Rightarrow a^2+2c^2-3b^2=19\)

Ta có : \(\frac{a^2+7}{4}=\frac{b^2+6}{5}=\frac{c^2+3}{6}=\frac{3b^2+18}{15}=\frac{2c^2+6}{12}\)\(=\frac{a^2+7+2c^2+6-3b^2-18}{4+12-15}=\frac{14}{1}=14\)

\(\Rightarrow\)\(a^2=49\Rightarrow a=7\)

\(\Rightarrow\)\(b^2=64\Rightarrow b=8\)

\(\Rightarrow\)\(c^2=81\Rightarrow c=9\)

b) \(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)

\(=\left(x^2+x+1\right)^2\)

Vì \(x^2+x+1=\left(x^2+2x\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Nên \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

Dấu bằng xảy ra khi và chỉ khi \(x=-\frac{1}{2}\)

21 tháng 2 2018

Bố già giỏi qa