\(1\dfrac{1}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

\(C=x^2+2x+1\dfrac{1}{2}\\ \Rightarrow C=\left(x^2+2x+1\right)+\dfrac{1}{2}\\ \Rightarrow C=\left(x+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=-1\)

Vậy \(C_{min}=\dfrac{1}{2}\Leftrightarrow x=-1\)

25 tháng 2 2022

 \(C=x^2+2x+1\dfrac{1}{2}.\\ C=x^2+2x+1+\dfrac{1}{2}.\\ C=\left(x+1\right)^2+\dfrac{1}{2}.\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\in R.\\ \dfrac{1}{2}>0. \)

\(\Rightarrow\left(x+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}.\)

Dấu "=" xảy ra khi \(x+1=0.\Leftrightarrow x=-1.\)

Vậy GTNN của biểu thức C là \(\dfrac{1}{2}\) khi x = -1.

a: \(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)

Dấu '=' xảy ra khi x=-1 và y=1/3

b: \(\left(2x-1\right)^2+3>=3\)

Do đó: D<=5/3

Dấu '=' xảy ra khi x=1/2

7 tháng 7 2017

Do \(\left(x+1\right)^2\ge0\); \(\left(y-\dfrac{1}{3}\right)^2\ge0\)

\(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)

Dấu "=" xảy ra khi \(x=-1;y=\dfrac{1}{3}\)

Vậy \(MIN_C=-10\) khi \(x=-1;y=\dfrac{1}{3}\)

7 tháng 7 2017

em là Phúc nè,cái này em đưa cho sp em mà sp em ko làm đc :))

1 tháng 3 2016

giúp với mình sắp nạp rồi

22 tháng 3 2017

Đặt \(x^2-x+\dfrac{1}{4}=0\)

\(\Rightarrow x^2-x=-\dfrac{1}{4}\)

\(\Rightarrow x^2-x=\left(\dfrac{1}{2}\right)^2-\dfrac{1}{2}\)

\(\Rightarrow x=\dfrac{1}{2}\)

Vậy nghiệm của đa thức \(x^2-x+\dfrac{1}{4}=0\)\(x=\dfrac{1}{2}\)

6 tháng 5 2018

thì tick nhé ủng hộ mink nhé@Cao Chu Thiên Trang

6 tháng 5 2018

\(M=\dfrac{-1}{3}.\left(-\left(x^4\right)\right).\left(y^3\right)\)

Bậc của đơn thức M là : 7

Hệ số của M : \(\dfrac{-1}{3}\)

b) \(M=\dfrac{-1}{3}.\left(-\left(-2^4\right)\right).2^3\)

\(M=\dfrac{-1}{3}.\left(-16\right).8=\dfrac{128}{3}\)

Mink ko biết dúng hay sai nha @Cao Chu Thiên Trang

28 tháng 6 2015

1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5<-21\)<=> \(x\ge8\) hoặc \(x<-13\)

2) 

a) |2x-3|>=0 => A>=0-5=-5 => Min A=-5 <=> x=3/2

b) \(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\Rightarrow B\ge2+5=7\)=> MinB=7 <=>x=1

3)

\(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\Leftrightarrow A\le0+7=7\Rightarrow MaxA=7\Leftrightarrow x=-\frac{1}{2}\)

b) 

th1: nếu x<-3/2 => B=-2x-3+2x+2=-1

th2: nếu \(-\frac{3}{2}\le x\le-1\)=> B=2x+3+2x+2=4x+5

ta có:\(-\frac{3}{2}\le x\le-1\Rightarrow-6\le4x\le-4\Leftrightarrow-1\le4x+5\le1\Rightarrow-1\le B\le1\)

th3: nếu x>-1 => B=2x+3-2x-2=1=>

Max B=1 <=> x>-1 hoặc \(-\frac{3}{2}\le x\le-1\)

28 tháng 6 2015

2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b|  \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0 

Ta có: B = |2x - 1| + |3 - 2x| + 5  \(\ge\) |2x - 1+3 - 2x| + 5  = |2| + 5 = 7

=> Min B = 7 khi

(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0 

Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\)  0 

=> x \(\ge\) 1/2 và x  \(\le\) 3/2

 

15 tháng 5 2015

Ta có: \(\frac{3x+4}{x+1}=\frac{3\left(x+1\right)+1}{x+1}=\frac{3\left(x+1\right)}{x+1}+\frac{1}{x+1}=3+\frac{1}{x+1}\left(x\ne-1\right)\).

    - Để  \(3+\frac{1}{x+1}\) đạt giá trị lớn nhất thì  \(\frac{1}{x+1}\) đạt giá trị dương lớn nhất

-> x+1 đạt giá trị dương nhỏ nhất  (x+1 khác 0)

-> x đạt giá trị dương nhỏ nhất

-> x=0

    

- Để  \(3+\frac{1}{x+1}\) đạt giá trị  nhỏ nhất thì  \(\frac{1}{x+1}\) đạt giá trị âm nhỏ nhất

-> x+1 đạt giá trị âm lớn nhất

-> x đạt giá trị âm lớn nhất

-> x= 0 

17 tháng 7 2018

1)

A=(x-2)^2-1

ta co (x-2)^2>=0 moi x thuoc R

(x-2)^2-1>=-1 moi.....

hay A>=-1

vay gia tri nho nhat cua bieu thuc A=1<=>  x-2=0 => x=2

2)

C= 3:(x-2)^2+5

ta co (x-2)^2>=0 moi ...

3:(x-2)^2= <0 moi...

3:(x-2)^2+5=<5moi...

hay C=<5 moi...

vay gia tri lon nhat cu bieu thuc C=5<=>x-2=0=>x=2

xin loi ban minh chi lam dc the thoi

29 tháng 8 2020

Ta có:

\(B=\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|\)

\(B=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+...+\left(\left|x-50\right|+\left|51-x\right|\right)\)

\(\ge\left|x-1+100-x\right|+\left|x-2+99-x\right|+...+\left|x-50+51-x\right|\)

\(=99+97+...+1=2500\)

Dấu "=" xảy ra khi: \(x=\frac{101}{2}\)