K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

B = |x - 2022| + |x - 1|

= |x - 2022| + |1 - x|

≥ |x - 2022 + 1 - x| = 2021

Vậy GTNN của B là 2021 khi 1 ≤ x ≤ 2022

15 tháng 6 2023

Với x ≥ 0 thì \(\sqrt{x}\ge0\) nên \(\sqrt{x}+1\ge1\)

Khi đó \(B=\left(\sqrt{x}+1\right)^{99}+2022\ge1^{99}+2022\)

Hay \(B=\left(\sqrt{x}+1\right)^{99}+2022\ge2023\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\) hay x = 0

Vậy GTNN của \(B=\left(\sqrt{x}+1\right)^{99}+2022\) là 2023 khi x = 0

LM
Lê Minh Vũ
CTVHS VIP
14 tháng 6 2023

\(B=\left(\sqrt{x}+1\right)^{99}+2022\left(x\ge0\right)\)

Vì: \(x\ge0\)

Nên => \(\left(\sqrt{x}+1\right)^{99}\ge0\)

=> \(\left(\sqrt{x}+1\right)^{99}+2022\ge2022\)

=> \(B\ge2022\)

Dấu " = " xảy ra khi: \(\Leftrightarrow\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=-1\left(voli\right)\)

Vậy: B không có giá trị nhỏ nhất

AH
Akai Haruma
Giáo viên
14 tháng 11 2023

Lời giải:

Ta thấy: $(x-1)^2\geq 0$ với mọi $x$

$(y+2)^2\geq 0$ với mọi $y$

$\Rightarrow A=(x-1)^2+4(y+2)^2+2021\geq 0+4.0+2021=2021$
Vậy $A_{\min}=2021$. Giá trị đạt được khi $x-1=y+2=0$

$\Rightarrow x=1; y=-2$

16 tháng 8 2017

nothing. 

16 tháng 8 2017

- Với \(x\ge7\) thì \(x-7\ge0\Rightarrow\left|x-7\right|=x-7\), thay vào A ta có:

\(A=x-7+6-x=-1\) (1)

- Với x < 7 thì x - 7 < 0 => |x - 7| = 7 - x, thay vào A ta có:

A = 7 - x + 6 - x = -2x + 13

Vì x < 7 nên -2x > -14 => -2x + 13 > -1 hay A > -1 (2)

Từ (1) và (2) => \(A\ge-1\)

Vậy GTNN của A = -1 khi x \(\ge\) 7

2 tháng 12 2023

cảm ơn các bạn

2 tháng 12 2023

nhầm

tớ nhắn lộn hihi

8 tháng 8 2016

/ x - 2008 / = / 2008 - x /

=>/x - 2008/ + /x + 2009/ = /2008 - x/ + /x + 2009/\(\ge\)/2008 - x + x + 2009/ = 4017

Đẳng thức xảy ra khi: (2008 - x)(x + 2009)=0 => x = 2008 hoặc x = -2009

Vậy giá trị nhỏ nhất của / x - 2008 / + / x + 2009 / là 4017 khi x = 2008 hoặc x= -2009

(dấu gạch chéo // là dấu giá trị tuyệt đối nha)

17 tháng 12 2021

a) \(M=2022-\left|x-9\right|\le2022\)

\(maxM=2022\Leftrightarrow x=9\)

b) \(N=\left|x-2021\right|+2022\ge2022\)

\(minN=2022\Leftrightarrow x=2021\)