K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2020

Bài làm:

Ta có: \(A=\sqrt{3+2x-x^2}=\sqrt{4-\left(x^2-2x+1\right)}=\sqrt{4-\left(x-1\right)^2}\)

Mà \(4-\left(x-1\right)^2\ge0\left(\forall x\right)\)vì điều kiện để A xác định

Nên dấu "=" xảy ra khi: \(4-\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=4\)

\(\Rightarrow\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy \(Min\left(A\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

20 tháng 4 2017

a) \(\orbr{\orbr{\begin{cases}x\ge\sqrt{5}\\x\le-\sqrt{5}\end{cases}}}\)             b)\(\orbr{\begin{cases}x\ge1\\x\le-3\end{cases}}\)

20 tháng 4 2017

c)\(\orbr{\begin{cases}\hept{\begin{cases}x\ge\sqrt{2}\\x\ne\sqrt{3}\end{cases}}\\\hept{\begin{cases}x\le-\sqrt{2}\\x\ne-\sqrt{3}\end{cases}}\end{cases}}\)

16 tháng 2 2021

Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\) 

Lại có: \(4\sqrt{x}\ge0\) với mọi x

\(3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]>0\) với mọi x

\(\Rightarrow\) \(\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\ge0\) với mọi x

Dấu "=" xảy ra \(\Leftrightarrow\) x = 0

Vậy ...

Chúc bn học tốt! (Mk ms nghĩ ra được GTNN thôi thông cảm!)

16 tháng 2 2021

Còn tìm GTLN:

Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-1\right)^2+\sqrt{x}\right]}\le\dfrac{4\sqrt{x}}{3\sqrt{x}}=\dfrac{4}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\) \(\sqrt{x}-1=0\) \(\Leftrightarrow\) x = 1

Vậy ...

Chúc bn học tốt!

12 tháng 7 2018

\(f\left(x\right)=\sqrt{3-x}+\sqrt{2+x}\ge\sqrt{3-x+2+x}=\sqrt{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}3-x=0\\2+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)

Vậy GTNN của \(f\left(x\right)=\sqrt{5}\) khi và chỉ khi x = 3; x = -2

13 tháng 7 2018

bạn ơi ở bước:

f(x)=\(\sqrt{3-x}+\sqrt{2+x}\ge\sqrt{3-x+2+x}\)

làm sao bạn ra đc bất đẳng thức như vậy ạ

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Bạn xem lại xem đã biết biểu thức đúng chưa vậy?

a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)

b: \P=A:B

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)

Dấu = xảy ra khi x=0