Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi biểu thức đã cho là $P$. Áp dụng BĐT Cauchy-Schwarz:
\(P+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{c+a-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)
\(=\frac{2(a+b+c)}{b+c-a}+\frac{\frac{9}{2}(a+b+c)}{c+a-b}+\frac{8(a+b+c)}{a+b-c}\)
\(=(a+b+c)\left(\frac{2}{b+c-a}+\frac{\frac{9}{2}}{c+a-b}+\frac{8}{a+b-c}\right)\)
\(\geq (a+b+c).\frac{(\sqrt{2}+\sqrt{\frac{9}{2}}+\sqrt{8})^2}{b+c-a+c+a-b+a+b-c}=\frac{81}{2}\)
\(\Rightarrow P\geq \frac{81}{2}-\frac{29}{2}=26\) (đpcm)
Xem thêm tại đây.
Câu hỏi của Trương quang huy hoàng - Toán lớp 9 | Học trực tuyến
Đặt \(\hept{\begin{cases}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=y+z\\b=x+z\\c=x+y\end{cases}}\)
\(\Rightarrow P=\frac{1}{2}.\left(\frac{4\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{y}+\frac{16\left(x+y\right)}{z}\right)\)
\(=\frac{1}{2}.\left(\left(\frac{4y}{x}+\frac{9x}{y}\right)+\left(\frac{4z}{x}+\frac{16x}{z}\right)+\left(\frac{9z}{y}+\frac{16y}{z}\right)\right)\)
\(\ge\frac{1}{2}.\left(2.2.3+2.2.4+2.3.4\right)=26\)
Đặt: \(\hept{\begin{cases}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{cases}}\Rightarrow x;y;z>0\text{ và }\hept{\begin{cases}a=y+z\\b=z+x\\c=x+y\end{cases}}\)
Áp dụng AM - GM, ta có:
\(2P=4\left(\frac{y+z}{x}\right)+9\left(\frac{x+z}{y}\right)+16\left(\frac{x+y}{z}\right)\)
\(=\left(4\frac{y}{x}+9\frac{x}{y}\right)+\left(4\frac{z}{x}+16\frac{x}{z}\right)+\left(9\frac{x}{y}+16\frac{x}{z}\right)\ge12+16+24=52\Rightarrow P\ge26\)
\(Đ\text{T}\Leftrightarrow3z=4y=6x\)
đề sai ở mẫu cuối nhé
đặt b + c - a = x ; a + c - b = y ; a + b - c = z
\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)
\(\Rightarrow P=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{9z}{2y}+\frac{8y}{z}\)
\(\ge6+8+12=26\)
\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
Áp dụng BĐT Svac
⇒\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\text{≥}\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)
Vì a+b+c=6
⇒\(\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{6^2}{12}=\dfrac{36}{12}=3\)
Còn lại thì bạn tự làm tiếp nha
Lời giải:
Ta có:
\(A=\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)
\(\Rightarrow A+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{a+c-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)
\(A+\frac{29}{2}=\frac{2(a+b+c)}{b+c-a}+\frac{\frac{9}{2}(a+b+c)}{a+c-b}+\frac{8(a+b+c)}{a+b-c}\)
\(A+\frac{29}{2}=(a+b+c)\left(\frac{2}{b+c-a}+\frac{\frac{9}{2}}{a+c-b}+\frac{8}{a+b-c}\right)\)
\(\geq (a+b+c).\frac{(\sqrt{2}+\sqrt{\frac{9}{2}}+\sqrt{8})^2}{b+c-a+a+c-b+a+b-c}=\frac{81}{2}\)
(Áp dụng BĐT S.Vac -xơ)
\(\Rightarrow A\geq 26\)
Vậy \(A_{\min}=26\)