Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có (a-b)^2(a^2+ba+b^2)>=0
<=>4(a-b)^2(a^2+ba+b^2)>=0 (1)
(a^2-b^2)^2>=0
<=>a^4+b^4-2a^2b^2>=0
<=>3(a^4+b^4-2a^2b^2)>=0 (2)
từ (1) và (2) =>4(a-b)^2(a^2+ba+b^2)+3(a^4+b^4-2a^2b^2...
<=>7(a^2+b^2) - 6a^2b^2 - 4ab(a^2+b^2)>=0
<=>8(a^2+b^2)>= a^4+b^4 + 2a^2b^2 + 4a^2b^2 + 4a^3b+4b^3a=(a+b)^4
<=>(a^4+b^4)>=(a+b)^4/8
<=>(a+b+2)(a^4+b^4)>=(a+b)^4.(a+b+2)/8 = (a+b)^5/8 + (a+b)^4/4 = (a+b)^5/8 + 15(a+b)^4/64 + (a+b)^4/64 (3)
ta lại có a+b>=2 căn ab = 4
=>15(a+b)^4/64>=60 và (a+b)^5/8>=128 (4)
từ (3) và (4) => (a+b+2)(a^4 + b^4) >=60+128+(a+b)^4/64
<=>(a+b+2)(a^2 + b^2) + 16/(a+b) >=188+(a+b)^4/64 + 16/(a+b) (5)
mặt khác (a+b)^4/64 + 16/(a+b) >= 2 căn[ (a+b)^3/ 4 ] = căn (a+b)^3 >= căn (4^3)= 8 (6)
từ (5) và (6) => (a+b+2)(a^4 + b^4) + 16/(a+b) >=188+8=196
=> min[ (a+b+2)(a^4 + b^4) + 16/(a+b) ] = 196 khi và chỉ khi a=b=2
Nguồn: The Duc
a)\(\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
b)\(\sqrt{\left(2-\sqrt{11}\right)^2}=2-\sqrt{11}\)
c)\(2\sqrt{a^2}=2a\) vì a≥0
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
a) \(=5\left|a\right|+3a=5a+3a=8a\)
b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)
c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)
Theo Cauchy:
\(3\sqrt{2a-1}=3\sqrt{1\left(2a-1\right)}\le\dfrac{3\left(1+2a-1\right)}{2}=3a\)
\(a\sqrt{5-4a^2}\le\dfrac{a^2+5-4a^2}{2}=\dfrac{5-3a^2}{2}\)
\(A\le3a+\dfrac{5-3a^2}{2}=\dfrac{5-3a^2+6a}{2}=\dfrac{-3\left(a-1\right)^2}{2}+4\le4\)
Vậy \(A_{max}=4\Leftrightarrow x=1\)
bạn có cách nào đoán điểm rơi hay thế ạ , phải thử thôi hay có cách gì khác nữa không v
A=(a4-2a3+a2) +2(a2-2a+1) +3
=(a2-a)2 + 2(a-1)2 + 3 \(\ge\)3
Dấu bằng xay ra khi a=1
A=a4 -2a3 +3a2 -4a +5
=a4 -2a3 +a2 +2a2-4a+2+3
=(a4 -2a3 +a2) +2(a2 -2a +1)+3
=(a2-a)2 +2(a-1)2 +3
\(\hept{\begin{cases}\left(a^2-a\right)^2\ge3\\2\left(a-1\right)^2\ge3\end{cases}\Rightarrow A_{Min}=3}\)