K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 11 2023

Lời giải:

Ta thấy: $(x-1)^2\geq 0$ với mọi $x$

$(y+2)^2\geq 0$ với mọi $y$

$\Rightarrow A=(x-1)^2+4(y+2)^2+2021\geq 0+4.0+2021=2021$
Vậy $A_{\min}=2021$. Giá trị đạt được khi $x-1=y+2=0$

$\Rightarrow x=1; y=-2$

28 tháng 12 2016

tìm GTLN thì đưa về dạng A^2 - k hoặc /A/ -k

GTNN đưa về dạng A^2 + k hoặc /A/ +k

28 tháng 12 2016

Choi mình VD đi bạn

19 tháng 9 2021

\(A=\frac{1}{3}+3\left|x-\frac{1}{3}\right|\)

Áp dụng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)

BG :

Ta thấy : \(\left|x-\frac{1}{3}\right|\ge0\)\(\forall\)\(x\)\(3\ge0\)

nên : \(3\left|x-\frac{1}{3}\right|\ge0\)\(\forall\)\(x\)

\(\Rightarrow\)\(\frac{1}{3}+3\left|x-\frac{1}{3}\right|\ge\frac{1}{3}+0\)\(\forall\)\(x\)

hay \(A\ge\frac{1}{3}\)\(\forall\)\(x\)

Dấu "=" xảy ra khi :

\(\Leftrightarrow\)\(\left|x-\frac{1}{3}\right|=0\)

\(\Leftrightarrow\)\(x-\frac{1}{3}=0\)

\(\Leftrightarrow\)\(x=\frac{1}{3}\)

Vậy GTNN của \(A=\frac{1}{3}\)đạt được khi \(x=\frac{1}{3}\)

19 tháng 9 2021

A=1/3+3x[x-1/3]

=>1/3+3x[x-1/3]=0

            3x[x-1/3]=1/3

                 x-1/3=1/3:3

                       x=1/9+1/3

                       x=4/9         

19 tháng 7 2018

a) Đặt A = I 2x-1/3 I +107

Có I 2x - 1/3 I \(\ge\)0 với mọi x

=> I 2x - 1/3 I + 107 \(\ge\)107 với mọi x

Để A đạt GTNN thì A = 107 

Dấu " = " xảy ra \(\Leftrightarrow\)I 2x-1/3 I = 0

                          \(\Leftrightarrow\)2x - 1/3 = 0

                          \(\Leftrightarrow\) 2x = 1/3

                          \(\Leftrightarrow\)  x = 1/6

=> KL

b) Đặt B = I 1 - 4x I -1

Có I 1 - 4x I \(\ge\)0 với mọi x

\(\Rightarrow\)I 1 - 4x I - 1 \(\ge\)-1 với mọi x

Để B đạt GTNN thì B = -1

Dấu " = " xảy ra \(\Leftrightarrow\)I 1 - 4x I = 0

                          \(\Leftrightarrow\) 1 - 4x = 0

                          \(\Leftrightarrow\)  4x = 1

                          \(\Leftrightarrow\)  x = 1/4

=> KL

4 tháng 4 2017

a) A+B=x2+1+3-4x=0 

<=> x2-4x+4=0 <=> (x-2)2=0

=> x=2

b) \(\frac{1}{A+B}=\frac{1}{\left(x-2\right)^2}\)

Để Biểu thức có giá trị nguyên => 1 phải chia hết cho (x-2)2 => (x-2)2=1 => x-2=-1 và x-2=1

=> x=1 và x=3

c) \(\frac{B}{A}=\frac{3-4x}{x^2+1}\)

5 tháng 4 2017

cảm ơn bạn nhiều

16 tháng 3 2018

a) Đặt \(A=10+2x-5x^2\)

\(-A=5x^2-2x-10\)

\(-5A=25x^2-10x-50\)

\(-5A=\left(25x^2-10x+1\right)-51\)

\(-5A=\left(5x-1\right)^2-51\)

Do \(\left(5x-1\right)^2\ge0\forall x\)

\(\Rightarrow-5A\ge-51\)

\(A\le\frac{51}{5}\)

Dấu "=" xảy ra khi : \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)

Vậy Max A = \(\frac{51}{5}\Leftrightarrow x=\frac{1}{5}\)

b) Đặt \(B=x^2-6x+10\)

\(B=\left(x^2-6x+9\right)+1\)

\(B=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\forall x\)

\(B\ge1\)

Dấu "=" xảy ra khi :

\(x-3=0\Leftrightarrow x=3\)

Vậy Min B \(=1\Leftrightarrow x=3\)

29 tháng 10 2020

A = | x - 1 | + | x + 2012 |

= | 1 - x | + | x + 2012 |

≥ | 1 - x + x + 2012 | = 2013

Dấu "=" xảy ra khi ab ≥ 0

=> ( 1 - x )( x + 2012 ) ≥ 0

=> -2012 ≤ x ≤ 1

=> MinA = 2013 <=> -2012 ≤ x ≤ 1

29 tháng 10 2020

A=[x-1]+[x+2012] lớn hơn hoặc bằng x-1

Vậy x = 1