K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

violympic có bài này á, chưa gặp bao giờ

2 tháng 1 2017

Bạn chép thiếu đề à??

2 tháng 1 2017

2x2 + 2y2 + 2xy - 6y + 21

= (x2 + 2xy + y2) - 2(x + y) + 1 + (x2 + 2x + 1) + (y2 - 4y + 4) + 15

= (x + y)2 - 2(x + y) + 1 + (x + 1)2 + (y - 2)2 + 15

= (x + y - 1)2 + (x + 1)2 + (y - 2)2 + 15 \(\ge15\)

Vậy GTNN là 15 đạt được khi x = - 1, y = 2

12 tháng 1 2017

bang 119

17 tháng 1 2017

tại sao ????

11 tháng 5 2019

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

12 tháng 5 2019

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

12 tháng 1 2017

\(2x^2\:+2y^2\:-2xy\:-6y\:+21\)

\(=2\left(x^2-xy+\frac{y^2}{4}\right)+\frac{3}{2}\left(y^2-4y+4\right)+15\\=2\left(x-\frac{y}{2}\right)^2+\frac{3}{2}\left(y-2\right)^2+15\:\ge \:15\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-\frac{y}{2}=0\\y-2=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy \(Min_P=15\) khi \(\left\{\begin{matrix}x=1\\y=2\end{matrix}\right.\)

21 tháng 3 2020

Ta có: \(2x^2+2y^2+2xy-6y+8=\left(2x^2+2xy+\frac{1}{2}y^2\right)+\left(\frac{3}{2}y^2-6y+6\right)+2=2\left(x+\frac{1}{2}y\right)^2+\frac{3}{2}\left(y-2\right)^2+2\ge2\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x=\frac{-y}{2}\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy....

21 tháng 3 2020

Ta có đặt A= \(\left(x^2+y^2-1+2xy-2y-2x\right)\)+\(\left(x^2+2x+1\right)+\left(y^2-4x+4\right)\)+4

=\(\left(x+y-1\right)^2+\left(x+1\right)^2+\left(y-2\right)^2+4\)≥4

=>GTNN của biểu thức <=>\(min_A\)=4

Dấu "=" xảy ra <=>x+y-1=0

x+1=0

y-2=0

=> x=-1

y=-2

15 tháng 11 2016

2A=(2x-y)^2+3(y-2)^2+9>=9

A>=9/2