Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2 + 2y2 + 2xy - 6y + 21
= (x2 + 2xy + y2) - 2(x + y) + 1 + (x2 + 2x + 1) + (y2 - 4y + 4) + 15
= (x + y)2 - 2(x + y) + 1 + (x + 1)2 + (y - 2)2 + 15
= (x + y - 1)2 + (x + 1)2 + (y - 2)2 + 15 \(\ge15\)
Vậy GTNN là 15 đạt được khi x = - 1, y = 2
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
\(2x^2\:+2y^2\:-2xy\:-6y\:+21\)
\(=2\left(x^2-xy+\frac{y^2}{4}\right)+\frac{3}{2}\left(y^2-4y+4\right)+15\\=2\left(x-\frac{y}{2}\right)^2+\frac{3}{2}\left(y-2\right)^2+15\:\ge \:15\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-\frac{y}{2}=0\\y-2=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(Min_P=15\) khi \(\left\{\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Ta có: \(2x^2+2y^2+2xy-6y+8=\left(2x^2+2xy+\frac{1}{2}y^2\right)+\left(\frac{3}{2}y^2-6y+6\right)+2=2\left(x+\frac{1}{2}y\right)^2+\frac{3}{2}\left(y-2\right)^2+2\ge2\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x=\frac{-y}{2}\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy....
Ta có đặt A= \(\left(x^2+y^2-1+2xy-2y-2x\right)\)+\(\left(x^2+2x+1\right)+\left(y^2-4x+4\right)\)+4
=\(\left(x+y-1\right)^2+\left(x+1\right)^2+\left(y-2\right)^2+4\)≥4
=>GTNN của biểu thức <=>\(min_A\)=4
Dấu "=" xảy ra <=>x+y-1=0
x+1=0
y-2=0
=> x=-1
y=-2
violympic có bài này á, chưa gặp bao giờ