K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017

bang 119

17 tháng 1 2017

tại sao ????

27 tháng 11 2016

violympic có bài này á, chưa gặp bao giờ

2 tháng 1 2017

Bạn chép thiếu đề à??

2 tháng 1 2017

2x2 + 2y2 + 2xy - 6y + 21

= (x2 + 2xy + y2) - 2(x + y) + 1 + (x2 + 2x + 1) + (y2 - 4y + 4) + 15

= (x + y)2 - 2(x + y) + 1 + (x + 1)2 + (y - 2)2 + 15

= (x + y - 1)2 + (x + 1)2 + (y - 2)2 + 15 \(\ge15\)

Vậy GTNN là 15 đạt được khi x = - 1, y = 2

12 tháng 1 2017

\(2x^2\:+2y^2\:-2xy\:-6y\:+21\)

\(=2\left(x^2-xy+\frac{y^2}{4}\right)+\frac{3}{2}\left(y^2-4y+4\right)+15\\=2\left(x-\frac{y}{2}\right)^2+\frac{3}{2}\left(y-2\right)^2+15\:\ge \:15\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-\frac{y}{2}=0\\y-2=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy \(Min_P=15\) khi \(\left\{\begin{matrix}x=1\\y=2\end{matrix}\right.\)

11 tháng 5 2019

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

12 tháng 5 2019

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

21 tháng 3 2020

Ta có: \(2x^2+2y^2+2xy-6y+8=\left(2x^2+2xy+\frac{1}{2}y^2\right)+\left(\frac{3}{2}y^2-6y+6\right)+2=2\left(x+\frac{1}{2}y\right)^2+\frac{3}{2}\left(y-2\right)^2+2\ge2\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x=\frac{-y}{2}\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy....

21 tháng 3 2020

Ta có đặt A= \(\left(x^2+y^2-1+2xy-2y-2x\right)\)+\(\left(x^2+2x+1\right)+\left(y^2-4x+4\right)\)+4

=\(\left(x+y-1\right)^2+\left(x+1\right)^2+\left(y-2\right)^2+4\)≥4

=>GTNN của biểu thức <=>\(min_A\)=4

Dấu "=" xảy ra <=>x+y-1=0

x+1=0

y-2=0

=> x=-1

y=-2

NV
13 tháng 5 2019

\(A=x^2+y^2+2xy+4x+4y+4+y^2+2y+1+14\)

\(A=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

\(\Rightarrow A_{min}=14\) khi \(\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)

\(B=2\left(x^2+xy+\frac{y^2}{4}\right)+\frac{1}{2}\left(y^2-4y+4\right)-6\)

\(B=2\left(x+\frac{y}{2}\right)^2+\frac{1}{2}\left(y-2\right)^2-6\ge-6\)

\(\Rightarrow B_{min}=-6\) khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Câu c đề sai, sao vừa có 2xy lại có cả 4xy

15 tháng 11 2016

2A=(2x-y)^2+3(y-2)^2+9>=9

A>=9/2