Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
Ta có : P = x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4
Vì \(\left(x-1\right)^2\ge0\forall x\)
Suy ra : \(P=\left(x-1\right)^2+4\ge4\forall x\)
Nên : Pmin = 4 khi x = 1
b) Ta có Q = 2x2 - 6x = 2(x2 - 3x) = 2(x2 - 3x + \(\frac{9}{4}-\frac{9}{4}\) ) = \(2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Vì \(2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
SUy ra ; \(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(Q_{min}=-\frac{9}{2}\) khi \(x=\frac{3}{2}\)
a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 = 9/4 <=> x = 3/2
b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy Min của x2 - 6x + 18 = 9 <=> x = 3
c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x
Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2
Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2
d) Ta có : x2 + y2 - 2x + 6y + 2019
= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009
= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y= -3
bạn cứ áp dụng công thức này vào rồi làm nhé!
\(ax^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2+\dfrac{4ac-b^2}{4a}\)
a dương thì bt có GTNN tại \(x=-\dfrac{b}{2a}\)
a âm thì bt có GTLN tại \(x=-\dfrac{b}{2a}\)
ví dụ câu a nhé:
\(a.\: A=2x^2-6x=2\left(x+\dfrac{-6}{2.2}\right)^2+\dfrac{4.2.0-\left(-6\right)^2}{4.2}\ge\dfrac{4.2.0-\left(-6\right)^2}{4.2}=-\dfrac{9}{2}\)
dấu "=" xảy ra khi \(x=\dfrac{3}{2}\)
vậy GTNN của A =\(-\dfrac{9}{2}\) tại \(x=\dfrac{3}{2}\)
\(b.\:B=x^2+y^2-x+6y+10\\ B=x^2-x+\dfrac{1}{4}+y^2+6y+9+\dfrac{3}{4}\\ B=\left(x+\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
vậy GTNN của B là \(\dfrac{3}{4}\) tại \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Câu 1.
P = x2 - 2x + 5
= ( x2 - 2x + 1 ) + 4
= ( x - 1 )2 + 4 ≥ 4 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinP = 4 <=> x = 1
Q = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2 ≥ -9/2 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinQ = -9/2 <=> x = 3/2
M = x2 + y2 - x + 6y + 10
= ( x2 - x + 1/4 ) + ( y2 + 6y + 9 ) + 3/4
= ( x - 1/2 )2 + ( y + 3 )2 + 3/4 ≥ 3/4 ∀ x
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
=> MinM = 3/4 <=> x = 1/2 ; y = -3
Câu 2.
A = 4x - x2 + 3
= -( x2 - 4x + 4 ) + 7
= -( x - 2 )2 + 7 ≤ 7 ∀ x
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxA = 7 <=> x = 2
B = x - x2
= -( x2 - x + 1/4 ) + 1/4
= -( x - 1/2 )2 + 1/4 ≤ 1/4 ∀ x
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MaxB = 1/4 <=> x = 1/2
N = 2x - 2x2
= -2( x2 - x + 1/4 ) + 1/2
= -2( x - 1/2 )2 + 1/2 ≤ 1/2 ∀ x
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MaxB = 1/2 <=> x = 1/2
Làm gần xong thì lỡ bấm out ra TT
\(P=x^2-2x+5=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy minP = 4 <=> x = 1
\(Q=2x^2-6x=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x=\frac{3}{2}\)
Vậy minQ = - 9/2 <=> x = 3/2
\(M=x^2+y^2-x+6y+10\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Vì \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
Vậy minM = 3/4 <=> x = 1/2 và y = - 3
ta có \(A=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left[\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)-5\right]\)
\(=-\left(2x+1\right)^2-\left(3y-1\right)^2+5\)
vì \(-\left(2x+1\right)^2< =0;-\left(3y-1\right)^2< =0\)
=> \(A< =5\)
dấu = xảy ra <=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)
b) ta có \(B=-\left(x^2-6x-5\right)=-\left[\left(x^2-6x+9\right)-14\right]\)
\(=-\left(x-3\right)^2+14\)
mà \(-\left(x-3\right)^2< =0\) => b<=14
dấu = xảy ra <=> \(x=3\)
k trả lời được thì biến nhé k ai cần cái loại mày đây nhé con
cám ơn nhìu ạ