\(B=1-\sqrt{x^2-2x+2}\)

b) \(C=1+\sqrt{4x-x^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2022

a: \(B=1-\sqrt{\left(x-1\right)^2+1}\)

(x-1)^2+1>=1

=>\(\sqrt{\left(x-1\right)^2+1}>=1\)

=>\(B< =0\)

Dấu = xảy ra khi x=1

b: 

ĐKXĐ: -(x+2)^2+2>=0

=>-(x+2)^2>=2

=>(x+2)^2<=2

=>\(-\sqrt{2}-2< =x< =\sqrt{2}-2\)

\(-x^2+4x-2=-\left(x^2-4x+2\right)\)

\(=-\left(x^2-4x+4-2\right)=-\left(x-2\right)^2+2< =2\)

=>\(0< =\sqrt{4x-x^2-2}< =\sqrt{2}\)

=>1<=C<=căn 2+1

\(C_{max}=\sqrt{2}+1\Leftrightarrow x=2\)

18 tháng 8 2020

c)\(C=5+\sqrt{-4x^2-4x}\)

\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)

\(C=5+\sqrt{1-\left(2x+1\right)^2}\)

Ta có: \(-\left(2x+1\right)^2\le0\)

\(\sqrt{1-\left(2x+1\right)^2}\le1\)

\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)

Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)

\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Mấy còn lại tương tự =)))

10 tháng 8 2019

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt

24 tháng 7 2018

BT1.

a,Ta có :\(A^2=-5x^2+10x+11\)

\(=-5\left(x^2-2x+1\right)+16\)

\(=-5\left(x-1\right)^2+16\)

Vì \(\left(x-1\right)^2\ge0\Rightarrow-5\left(x-1\right)^2\le0\)

\(\Rightarrow A^2\le16\Rightarrow A\le4\)

Dấu ''='' xảy ra \(\Leftrightarrow x=1\)

Vậy Max A = 4 \(\Leftrightarrow x=1\)

Câu b,c tương tự nhé.

20 tháng 7 2019

a) Do VT >=0 nên VP >=0 nên \(x\ge4\)

\(PT\Leftrightarrow\left(x-2\right)-\sqrt{x-2}-2=0\)

Đặt \(\sqrt{x-2}=t\ge\sqrt{4-2}=\sqrt{2}\) thì \(t^2-t-2=0\)

\(\Leftrightarrow t=2\left(loại t = -1 vì nó không thỏa mãn đk\right)\Leftrightarrow x-2=4\Leftrightarrow x=6\)

20 tháng 7 2019

b) (sai thì thôi nha) Dễ thấy x = 4 là một nghiệm

Xét x khác 4:ĐK: \(x>4\)(1) . Mặt khác do VT > 0 nên VP > 0 suy ra x < 4(2)

Do x không thể đồng thời thỏa mãn (1) và (2) nên vô nghiệm.

Vậy x = 4

27 tháng 8 2020

a) Ta có: \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\forall x\right)\)

=> \(A=\frac{1}{x-\sqrt{x}+1}\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(\sqrt{x}-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{4}\)

Vậy Max(A) = 4/3 khi x = 1/4

b) \(B=\sqrt{4x-x^2+21}=\sqrt{-\left(x^2-4x+4\right)+25}\)

\(=\sqrt{25-\left(x-2\right)^2}\le\sqrt{25}=5\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy Max(B) = 5 khi x = 2

c) \(C=1+\sqrt{-9x^2+6x}=1+\sqrt{-\left(9x^2-6x+1\right)+1}\)

\(=1+\sqrt{1-\left(3x-1\right)^2}\le1+\sqrt{1}=2\)

Dấu "=" xảy ra khi: \(\left(3x-1\right)=0\Rightarrow x=\frac{1}{3}\)

Vậy Max(C) = 2 khi x = 1/3

d) Ta có: \(D=\sqrt{x-2}+\sqrt{4-x}\)

=> \(D^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-2+4-x\right)\) ( BĐT Bunhia)

\(=2.2=4\)

=> \(D\le2\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x-2=4-x\Rightarrow x=3\)

Vậy Max(D) = 2 khi x = 3

27 tháng 8 2020

cảm ơn bạn nhaaa

27 tháng 8 2020

a) Ta có: \(A=\sqrt{4x^2+4x+2}=\sqrt{\left(4x^2+4x+1\right)+1}\)

\(=\sqrt{\left(2x+1\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy Min(A) = 1 khi x = -1/2

b) Ta có: \(B=\sqrt{2x^2-4x+5}=\sqrt{\left(2x^2-4x+2\right)+3}\)

\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy Min(B) = \(\sqrt{3}\) khi x = 1

18 tháng 11 2019

a) \(x\ge0\)đặt \(\sqrt{x}=a\ge0\)

\(A=\frac{2a}{a^2-a+1}\Leftrightarrow A.a^2+A-2a=0\Leftrightarrow A.a^2-\left(A+2\right)a+A=0\)

\(\Delta=\left(A+2\right)^2-4A^2=-3A^2+4A+4\ge0\Rightarrow A\le2\)

\(\Rightarrow A_{max}=2\) khi  \(x=1\)

b) 

\(x\ge0\)

\(B=-\left(x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{4}=-\left(\sqrt{x-\frac{1}{2}}\right)^2-\frac{7}{4}\le\frac{-7}{4}\)

\(\Rightarrow B_{max}=\frac{-7}{4}\) khi \(\sqrt{x=}\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

c) \(x\ge0\)

\(C=-2+\sqrt{x}-1=-2\left(x-2.\sqrt{x}.\frac{1}{4}+\frac{1}{16}\right)-\frac{7}{8}\)

\(C=-2\left(\sqrt{x}-\frac{1}{4}\right)^2\frac{7}{8}\le\frac{-7}{8}\)

\(C_{max}=\frac{-7}{8}\)khi đó \(x=\frac{1}{16}\)

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

a) ĐK: $x\geq 0$

\(A=2x-6\sqrt{x}-1=2(x-3\sqrt{x}+\frac{3^2}{2^2})-\frac{11}{2}\)

\(=2(\sqrt{x}-\frac{3}{2})^2-\frac{11}{2}\geq \frac{-11}{2}\)

Vậy GTNN của $A$ là $\frac{-11}{2}$. Giá trị này đạt được tại \((\sqrt{x}-\frac{3}{2})^2=0\Leftrightarrow x=\frac{9}{4}\)

b) Không đủ căn cứ để tìm min- max

c)

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}=\sqrt{(2x-1)^2}+\sqrt{(2x-3)^2}\)

\(=|2x-1|+|2x-3|\)

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

\(E=|2x-1|+|3-2x|\geq |2x-1+3-2x|=2\)

Vậy $E_{\min}=2$. Giá trị này đạt tại $(2x-1)(3-2x)\geq 0$

$\Leftrightarrow \frac{1}{2}\leq x\leq \frac{3}{2}$

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

d) ĐKXĐ: \(\frac{7}{2}\leq x\leq \frac{5}{2}\) (vô lý)

e)

\(A=-3x+6\sqrt{x}+3=6-3(x-2\sqrt{x}+1)=6-3(\sqrt{x}-1)^2\)

\(\leq 6\) do $(\sqrt{x}-1)^2\geq 0$ với mọi $x\geq 0$)

Vậy $A_{\max}=6$. Giá trị này xác định tại $(\sqrt{x}-1)^2=0\Leftrightarrow x=1$

f) ĐK: $x\geq 4$

\(E^2=4x-7-2\sqrt{(2x+1)(2x-8)}\)

Với mọi $x\geq 4$ thì:

\(2x+1> 2x-8\Rightarrow (2x+1)(2x-8)\geq(2x-8)^2\)

\(\Rightarrow E^2\leq 4x-7-2\sqrt{(2x-8)^2}=4x-7-2(2x-8)=9\)

$\Rightarrow E\leq 3$

Vậy $E_{\max}=3$ khi $2x-8=0\Leftrightarrow x=4$