K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

\(A=\frac{x^2+2x+3}{x^2+2}\)

\(\Leftrightarrow Ax^2+2A=x^2+2x+3\)

\(\Leftrightarrow Ax^2+2A-x^2-2x-3=0\)

\(\Leftrightarrow x^2\left(A-1\right)-2x+\left(2A-3\right)=0\)

Để pt trên có nghiệm thì \(\Delta=4-4\left(A-1\right)\left(2A-3\right)\ge0\)

\(\Leftrightarrow1-\left(2A^2-5A+3\right)\ge0\Leftrightarrow-2A^2+5A-2\ge0\)

\(\Leftrightarrow\left(1-2A\right)\left(A-2\right)\ge0\Leftrightarrow\frac{1}{2}\le A\le2\)

Vậy A có GTNN là \(\frac{1}{2}\) tại x = - 2

     A có GTLN là 2 tại x = 1

min A=2 khi x=1

_____________
_______________
nha