Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+8x-24\)
\(=2\left(x^2+4x-12\right)\)
\(=2\left[x^2+4x-4-8\right]\)
\(=2\left[\left(x-2\right)^2-8\right]\)
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2-8\ge-8\)
\(\Rightarrow2\left[\left(x-2\right)^2-8\right]\ge-16\)
Do đó GTNN của A là -16 khi \(x-2=0\Rightarrow x=2\)
\(B=x^2-8x+5=x^2-8x+16-9\)
\(=x^2-2\left(4x\right)+4^2-9\)
\(=\left(x-4\right)^2-9\)
\(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2-9\ge-9\)
Do đó GTNN của B là -9 khi \(x-4=0\Rightarrow x=4\)
\(5-8x-x^2\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(\left(x+4\right)^2-21\right)\)
\(=21-\left(x+4\right)^2\le21\)
Min bằng 21 \(\Leftrightarrow x=-4\)
\(\left|x^4+5\right|^2\ge25\)
Dấu '=' xảy ra khi x=0
1) \(M=\frac{x^2+y^2+7}{x^2+y^2+5}=1+\frac{2}{x^2+y^2+5}\)
Ta có: \(x^2+y^2\ge0,\forall x;y\)
=> \(x^2+y^2+5\ge5\) với mọi x; y
=> \(\frac{2}{x^2+y^2+5}\le\frac{2}{5}\)
=> \(M\le1+\frac{2}{5}=\frac{7}{5}\)
Dấu "=" xảy ra <=> x = y = 0
Vậy max M = 7/5 đạt tại x = y = 0
2) \(f\left(x-1\right)=x^2-3x+5=x^2-x-2x+2+3\)
\(=x\left(x-1\right)-2\left(x-1\right)+3=x\left(x-1\right)-\left(x-1\right)-\left(x-1\right)+3\)
\(=\left(x-1\right)\left(x-1\right)-\left(x-1\right)+3\)
=> \(f\left(x\right)=x.x-x+3=x^2-x+3\)
a, 1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 + (-2) ≥ (-2) => A ≥ -2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)
Vậy GTNN A = -2 khi x = 2019 và y = 1
2, Ta có: |x - 3| = |3 - x|
Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1
=> C ≥ 1 - 5 => C ≥ -4
Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0
+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)
+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)
Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3
b,
1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9
Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5
Vậy GTLN B = 9 khi x = 5 hoặc x = -5
2, Đk: x ≠ 5
\(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)
Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6
=> \(D=1+1=2\)
Vậy GTLN của D = 2 khi x = 6
Vì -x^2>=0
=>x>=0
=>-x^2-8x+5>=5
Dấu bằng xảy ra khi x=0
=>P có giá trị lớn nhất là 5
Vậy P có giá trị lớn nhất bằng 5
Minh nhanh nhat, nho k cho minh nhe!