K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2015

3x2 + 2x + 3=3.(x2+\(\frac{2}{3}\)x+1)=3.(x2+2.x.\(\frac{1}{3}\)+\(\frac{1}{9}\)+\(\frac{8}{9}\))

=3.(\(\left(x+\frac{1}{3}\right)^2+\frac{8}{9}\))

=3.\(\left(x+\frac{1}{3}\right)^2\)+\(\frac{24}{9}\)>\(\frac{24}{9}\)

Vậy GTNN của 3x2 + 2x + 3=\(\frac{24}{9}\)\(\Leftrightarrow\)\(\left(x+\frac{1}{3}\right)^2\)=0\(\Leftrightarrow\)x=\(-\frac{1}{3}\)

 

20 tháng 8 2021

\(A=2x^2-3x+2=2\left(x^2-\frac{3}{2}x\right)+2\)

\(=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+2=2\left(x-\frac{3}{4}\right)^2-\frac{9}{8}+2\ge\frac{7}{8}\)

Dấu ''='' xảy ra khi x = 3/4 

Vậy GTNN của A bằng 7/8 tại x = 3/4 

5 tháng 8 2018

ta có: \(D=x^2-2x+3\)

=>\(D=x^2-2x+1^2-1+3\)

=>\(D=\left(x-1\right)^2-2\)

Do \(\left(x-1\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=1)

=>\(\left(x-1\right)^2-2\ge-2\) hay \(D\ge-2\) với mọi x (dấu "=" xảy ra <=> x=1)

Vậy MIN D=\(-2\) tại x=1

5 tháng 8 2018

ta có : \(x^2-2x+3=x^2-2x+1+2=\left(x-1\right)^2+2\ge2\)

\(\Rightarrow D_{max}\)\(2\) khi \(x=1\)

11 tháng 7 2017

Ta có : D = (x - 1).(x + 3).(x + 2).(x + 6)

=> D = [(x - 1)(x + 6)].[(x + 3).(x + 2)]

=> D = (x2 + 5x - 6) . (x2 + 5x + 6)

=> D = (x2 + 5x)2 - 36

=> D = [x(x + 5)]2 - 36

Mà : [x(x + 5)]​2  \(\ge0\forall x\)

Suy ra : D = [x(x + 5)]​2 - 36 \(\ge-36\forall x\)

Vậy Dmin = -36 , dấu "=" xẩy ra khi và chỉ khi x = 0 hoặc -5

28 tháng 10 2019

Ta có: A = 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MinA = 3 <=> x = -1

28 tháng 10 2019

\(2x^2+4x+5\)

\(=2\left(x^2+2x+\frac{5}{2}\right)\)

\(=2\left(x^2+2x+1+\frac{3}{2}\right)\)

\(=2\left[\left(x+1\right)^2+\frac{3}{2}\right]\)

\(=2\left(x+1\right)^2+3\ge3\)

Dấu '' = '' xảy ra khi 

\(\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy............................

P/s : sai thì thôi nha

17 tháng 1 2018

Ta có: \(M=\frac{x^2+2x+3}{x^2+2}=\frac{2.\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}\)

                                                  \(=\frac{2.\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)

Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy Mmax = 2 khi x = 1