Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2-3x+2=2\left(x^2-\frac{3}{2}x\right)+2\)
\(=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+2=2\left(x-\frac{3}{4}\right)^2-\frac{9}{8}+2\ge\frac{7}{8}\)
Dấu ''='' xảy ra khi x = 3/4
Vậy GTNN của A bằng 7/8 tại x = 3/4
ta có: \(D=x^2-2x+3\)
=>\(D=x^2-2x+1^2-1+3\)
=>\(D=\left(x-1\right)^2-2\)
Do \(\left(x-1\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=1)
=>\(\left(x-1\right)^2-2\ge-2\) hay \(D\ge-2\) với mọi x (dấu "=" xảy ra <=> x=1)
Vậy MIN D=\(-2\) tại x=1
ta có : \(x^2-2x+3=x^2-2x+1+2=\left(x-1\right)^2+2\ge2\)
\(\Rightarrow D_{max}\) là \(2\) khi \(x=1\)
Ta có : D = (x - 1).(x + 3).(x + 2).(x + 6)
=> D = [(x - 1)(x + 6)].[(x + 3).(x + 2)]
=> D = (x2 + 5x - 6) . (x2 + 5x + 6)
=> D = (x2 + 5x)2 - 36
=> D = [x(x + 5)]2 - 36
Mà : [x(x + 5)]2 \(\ge0\forall x\)
Suy ra : D = [x(x + 5)]2 - 36 \(\ge-36\forall x\)
Vậy Dmin = -36 , dấu "=" xẩy ra khi và chỉ khi x = 0 hoặc -5
Ta có: A = 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 \(\ge\)3 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MinA = 3 <=> x = -1
\(2x^2+4x+5\)
\(=2\left(x^2+2x+\frac{5}{2}\right)\)
\(=2\left(x^2+2x+1+\frac{3}{2}\right)\)
\(=2\left[\left(x+1\right)^2+\frac{3}{2}\right]\)
\(=2\left(x+1\right)^2+3\ge3\)
Dấu '' = '' xảy ra khi
\(\Leftrightarrow2\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy............................
P/s : sai thì thôi nha
Ta có: \(M=\frac{x^2+2x+3}{x^2+2}=\frac{2.\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}\)
\(=\frac{2.\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)
Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)
Vậy Mmax = 2 khi x = 1
3x2 + 2x + 3=3.(x2+\(\frac{2}{3}\)x+1)=3.(x2+2.x.\(\frac{1}{3}\)+\(\frac{1}{9}\)+\(\frac{8}{9}\))
=3.(\(\left(x+\frac{1}{3}\right)^2+\frac{8}{9}\))
=3.\(\left(x+\frac{1}{3}\right)^2\)+\(\frac{24}{9}\)>\(\frac{24}{9}\)
Vậy GTNN của 3x2 + 2x + 3=\(\frac{24}{9}\)\(\Leftrightarrow\)\(\left(x+\frac{1}{3}\right)^2\)=0\(\Leftrightarrow\)x=\(-\frac{1}{3}\)