K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

a)\(A=-x^2-4x+1\)

\(A=-x^2-4x-4+5\)

\(A=-\left(x+2\right)^2+5\le5\)

Dấu "=" xảy ra khi x = -2

Vậy Max A = 5 <=> x = -2

30 tháng 8 2021

a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(minA=-3\Leftrightarrow x=2\)

b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)

\(maxB=21\Leftrightarrow x=-4\)

c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)

\(minC=11\Leftrightarrow x=2\)

d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)

\(maxD=4\Leftrightarrow x=-1\)

30 tháng 8 2021

a) A = (x-2)^2 - 3 >= -3

--> A nhỏ nhất bằng -3

 <=> x = 2

13 tháng 10 2021

\(A=\dfrac{1}{x^2+2}\)

Ta có \(x^2+2\ge2\Leftrightarrow\dfrac{1}{x^2+2}\le\dfrac{1}{2}\)

Vậy \(A_{max}=\dfrac{1}{2}\Leftrightarrow x=0\)

\(B=-\left|x+2015\right|+4\le4\\ B_{max}=4\Leftrightarrow x+2015=0\Leftrightarrow x=-2015\)

13 tháng 10 2021

J siêng dzậy :)

2 tháng 10 2023

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

\(A\ge1\forall x\)

Dấu '=' xảy ra khi x=0

\(B\ge-5\forall x\)

Dấu '=' xảy ra khi x=0

16 tháng 1 2022

\(A=x^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(A_{min}=1\Leftrightarrow x=0\)

\(B=3x^4-5\ge-5\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(B_{min}=-5\Leftrightarrow x=0\)

a: A=(x-1)^2=(-1-1)^2=4

b: B=(2x+1)^2=2^2=4

C=(2x-1)(x-1)(2x^2-3x-1)+2017

=(2x^2-3x+1)(2x^2-3x-1)+2017

=(2x^2-3x)^2-1+2017

=(2x^2-3x)^2+2016>=2016

Dấu = xảy ra khi 2x^2-3x=0

=>x=0 hoặc x=3/2

D=(x-1)(x-6)(x-3)(x-4)+10

=(x^2-7x+6)(x^2-7x+12)+10

=(x^2-7x)^2+18*(x^2-7x)+72+10

=(x^2-7x+9)^2+1>=1

Dấu = xảy ra khi x^2-7x+9=0

=>\(x=\dfrac{7\pm\sqrt{13}}{2}\)

12 tháng 7 2021

bài này ko có Max chỉ có Min thôi

\(=>x^2+2x-1=x^2+2x+1-2=\left(x+1\right)^2-2\ge-2\)

dấu"=" xảy ra<=>x=-1

12 tháng 7 2021

vãi ông đăng lên xong lại sửa đề 

\(-x^2+2x-1=-\left(x^2-2x+1\right)=-\left(x-1\right)^2\le0\)

dấu"=" xảy ra<=>x=1

a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)

\(=3x^2+3y^2=3\)

b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)

c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)

d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)

=9-12+1

=-2