Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a, 4x2+4x+2
= 2x2+2x2+2x+2x+2
= 2x2+(2x2+2x)+(2x+2)
= 2x2+ 2x(x+1)+2(x+1)
= 2x2+(2x+2)(x+1)
= 2x2+2(x+1)(x+1)
=2x2+2(x+1)2
Để 2x2+2(x+1)2=0
=>\(\left\{{}\begin{matrix}2x^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)(vô lý)
=> đa thức 4x2+4x+2 vô nghiệm
Câu 1: a) x = 1 là nghiệm của đa thức f(x)
b) x = -1 là nghiệm của đa thức g(x)
c) x = 1 là nghiệm của đa thức h(x)
Câu 2: Số 1 là ngiệm của đa thức f(x)
Giải:
a) Để đa thức có nghiệm
\(\Leftrightarrow x^2-64=0\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x=\pm8\)
Vậy ...
d) Để đa thức có nghiệm
\(\Leftrightarrow x^2-81=0\)
\(\Leftrightarrow x^2=81\)
\(\Leftrightarrow x=\pm9\)
Vậy ...
h) Để đa thức có nghiệm
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow\left(x-6\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy ...
Các câu còn lại làm tương tự.
a, x\(^2\) - 64 = 0
\(\Rightarrow\) x\(^2\) = 0 + 64
= 64
= 8\(^2\)
\(\Rightarrow\) x = 8
Vậy nghiệm của \(x^2-64\) là 8
d, \(x^2-81\) = 0
\(\Rightarrow\) x\(^2\) = 81
= 9\(^2\)
\(\Rightarrow\) x = 9
vậy nghiệm của \(x^2-81\) là 9
1. Ta có :
f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0
f(x) = m - 1 - 3m + 2 = -2m + 1 = 0
\(\Rightarrow m=\frac{1}{2}\)
2.
a) M(x) = -2x2 + 5x = 0
\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)
b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0
N(x) = ( x + 2 ) . ( x - 1/2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014
vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm
a) ta có: \(A_{\left(x\right)}=2x.\left(x+3\right)-3x^2.\left(x+2\right)+x.\left(3x^2+4x-6\right)\)
\(A_{\left(x\right)}=2x^2+6x-3x^3-6x^2+3x^3+4x^2-6x\)
\(A_{\left(x\right)}=\left(2x^2-6x^2+4x^2\right)+\left(6x-6x\right)+\left(3x^3-3x^3\right)\)
\(A_{\left(x\right)}=0\)
=> A(x) không phụ thuộc vào giá trị của x
phần b bn lm tương tự nha!
trả lời:
p(-1)=5(-1)^5+3(-1)-4(-1)^4-2(-1)^3+6+4(-1)^2
=-5-3-4+2+6+4=0
q(1)=2.1^4-1+3.1^2-2.1^3+1/4-1^4
=2+3-2+1/4-1=9/4>>4.q(1)=4.9/4=9
C=(2x-1)(x-1)(2x^2-3x-1)+2017
=(2x^2-3x+1)(2x^2-3x-1)+2017
=(2x^2-3x)^2-1+2017
=(2x^2-3x)^2+2016>=2016
Dấu = xảy ra khi 2x^2-3x=0
=>x=0 hoặc x=3/2
D=(x-1)(x-6)(x-3)(x-4)+10
=(x^2-7x+6)(x^2-7x+12)+10
=(x^2-7x)^2+18*(x^2-7x)+72+10
=(x^2-7x+9)^2+1>=1
Dấu = xảy ra khi x^2-7x+9=0
=>\(x=\dfrac{7\pm\sqrt{13}}{2}\)