Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
a) Vì : \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)
Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)
b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy....
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\le1+\frac{2x}{2x\sqrt{3}}=\frac{\sqrt{3}+1}{\sqrt{3}}\)
Dấu bằng xảy ra khi và chỉ khi \(x^2+3=2x\sqrt{3}\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\Leftrightarrow x=\sqrt{3}\)
\(B=\frac{x^2+2x+3}{x^2+3}=1+\frac{2x}{x^2+3}\ge1+\frac{-\frac{x^2+3}{\sqrt{3}}}{x^2+3}=1-\frac{1}{\sqrt{3}}=\frac{\sqrt{3}-1}{\sqrt{3}}\)
Dấu bằng xảy ra khi và chỉ khi \(2x=-\frac{x^2+3}{\sqrt{3}}\Leftrightarrow2x\sqrt{3}=-\left(x^2+3\right)\Leftrightarrow\left(x+\sqrt{3}\right)^2=0\Leftrightarrow x=-\sqrt{3}\)
Xét \(B=\frac{x^2+y^2+3}{x^2+y^2+2}\)
Mà \(x^2+y^2\ge0\)
Ta có \(\left(x^2+y^2+3\right)-\left(x^2+y^2+2\right)=1\)
Suy ra biểu thức B luôn có tử lớn hơn mẫu 1 đơn vị tức B>1
Để B đạt GTLN thì x và y phải càng nhỏ
Mà \(x^2+y^2\)đạt giá trị nhỏ nhất khi \(x^2+y^2=0\)
Thay vào
Ta có GTLN của B là 0,5
\(\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+3\ge3\)
Do đó \(\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{3}\)
=> GTLN của B là \(\frac{1}{3}\)
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy khi x = 1 thì B đạt GTLN là \(\frac{1}{3}\).
(x−1)2≥0⇒2(x−1)2≥0⇒2(x−1)2+3≥3
Do đó 12(x−1)2+3≤13
=> GTLN của B là 13
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy khi x = 1 thì B đạt GTLN là 13.
Chúc bạn hok tốt
Bạn tham khảo nhé !
Nguồn : hoidap247.net
Hok tốt
\(\text{Để }B=\frac{1}{\left|x-2\right|+3}\text{nhận giá trị lớn nhất thì :}\)
\(\left|x-2\right|+3\)nhận giá trị nhỏ nhất
Vì | x - 2 | ≥ 0 ∀ x ∈ Z
=> | x - 2 | + 3 ≥ 3
\(B=\frac{1}{\left|x-2\right|+3}\text{nhận giá trị lớn nhất }\Leftrightarrow|x-2|+3=3\)
\(\Leftrightarrow B=\frac{1}{\left|x-2\right|+3}=\frac{1}{3}\)