K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NA
0
NA
0
BH
0
TT
0
NV
0
S
1
9 tháng 2 2017
a) ta thấy A có thể âm, có thể dương nên để A lớn nhất thì 6-x>0 hay x<6
đẻ \(A=\frac{2}{6-x}\)lớn nhất \(\Leftrightarrow\)6-x nhỏ nhất <=> x lớn nhất
Mà x<6 nên x=5
vậy GTLN của A=2 khi x=5
b) B=\(\frac{8-x}{x-3}=\frac{5-\left(x-3\right)}{x-3}=\frac{5}{x-3}-1\)
Nên B nhỏ nhất <=> \(\frac{5}{x-3}\)nhỏ nhất <=> x-3 lớn nhất (?)
đề này cho thiếu dữ kiện
Lời giải:
Điều kiện: $x\neq 0$
Nếu $x>0$ thì: $A=\frac{x+2}{|x|}=\frac{x+2}{x}=1+\frac{2}{x}$
$A$ lớn nhất khi $\frac{2}{x}$ lớn nhất
$\Rightarrow x$ là số nguyên dương nhỏ nhất
$\Rightarrow x=1$. Khi đó: $A_{\max}=\frac{1+2}{1}=3$
Nếu $x<0$ thì: $A=\frac{x+2}{|x|}=\frac{x+2}{-x}=-1+\frac{2}{-x}$
$A$ lớn nhất khi $\frac{2}{-x}$ lớn nhất
$\Rightarrow -x$ là số nguyên dương nhỏ nhất
$\Rightarrow -x=1\Rightarrow x=-1$
Khi đó: $A_{\max}=-1+\frac{2}{-(-1)}=-1+\frac{2}{1}=1$
Từ 2 TH trên suy ra $A_{\max}=3$ khi $x=1$