Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (x^2+x).(x^2+x-4)
= (x^2+x-2+2).(x^2+x-2-2)
= (x^2+x-2)^2 - 2^2
= (x^2+x-2)^2 - 4 >= -4
Dấu "=" xảy ra <=> x^2+x-2 = 0 <=> x=1 hoặc x=-2
Vậy GTNN của A = -4 <=> x=1 hoặc x=-2
Tk mk nha
\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)
Dấu \("="\Leftrightarrow x=-5\)
\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)
Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).
\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)
Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).
a/ M = -x2 - 2x + 7 = -(x2 + 2x - 7) = -(x2 + 2 . x + 1 - 8) = -[ (x + 1)2 - 8] = -(x + 1)2 + 8 \(\le\)8
Đẳng thức xảy ra khi: -(x + 1)2 = 0 => x = -1
Vậy giá trị lớn nhất của M là 8 khi x = -1
b/ N = -x2 + 4x + 5 = -(x2 - 4x - 5) = -(x2 - 2 . 2x + 22 - 9) = -[ (x - 2)2 - 9] = -(x - 2)2 + 9 \(\le\)9
Đẳng thức xảy ra khi: -(x - 2)2 = 0 => x = 2
Vậy giá trị lớn nhất của N là 9 khi x = 2
a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).
b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)
Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).
E XIN LỖI CHỊ , NHƯNG E MỚI HỌC LỚP 6
THÌ GIÚP CHỊ KIỂU GÌ Ạ ???
THÔI THÌ CHÚC CHỊ SẼ CHỌN ĐC CÂU TRẢ LỜI ƯNG Ý VỚI MK NHÉ ! MỌI NGƯỜI GIÚP CHỊ NHA !
\(x-x^2+1\)
\(=-\left(x^2-x-1\right)\)
\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{5}{4}\right)\)
\(=-\left(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\right)\)
\(=\frac{5}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{5}{4}\)
Max\(=\frac{5}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Tìm GTLN, GTNN của biểu thức sau
\(1,A=\left(x-1\right)^2-10\)
\(2,B=-|x-1|-2\left(2y-1\right)^2+100\)
1: \(A=\left(x-1\right)^2-10\ge-10\)
Dấu '=' xảy ra khi x=1
2: \(B=-\left|x-1\right|-2\cdot\left(2y-1\right)^2+100\le100\)
Dấu '=' xảy ra khi x=1 và y=1/2
`(x-1)^2 >=0 => (x-1)^2 - 10 >= -10`
Dấu bằng xảy ra khi `x = 1`.
Vì `-|x-1| <=0, -2(2y-1)^2 <= 0`
`=> -|x-1| - 2(2y-1)^2 + 100 <= 100`
Dấu bằng xảy ra `<=> x = 1, y = 1/2`.
ta có:
x2 ≥0
=>- x2≤0
=> -x2+x≤0
A=-x2+x=0
=> A=x(1-x)=0
=> _x=0
|_x=1
=> max của A là 0 tại x =1 hoặc x=0
đây phải là tìm GTLN chứ