K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

GTLN = 17/8  tại x = 3/4

Chuẩn không cần chỉnh (ai tích mình mình tích lại)

6 tháng 3 2016

-(2x2-3x-1)=\(-2\left(x^2-\frac{3}{2}x-1\right)\)

=\(-2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{25}{16}\right)=-2\left(x-\frac{3}{4}\right)+\frac{25}{3}\)

vật gtln là 25/3 khi x=3/4

18 tháng 7 2017

A = 3 - 2(3x+1)

    = 3 - 6x -2

    = 1 - 6x

max A = 1 khi x = 0

18 tháng 7 2017

Ta có A=3-2(3x+1)2

Lại có 2(3x+1)2 lớn hơn hoặc bằng 0

=> 3-2(3x+1) bé hơn hoặc bằng 3

Dấu "=" xảy ra khi

2(3x+1)2=0

=>x=(-1/3)

Vậy GTLN của A=3 khi x=(-1/3)

\(A=3-2\left(3x+1\right)^2\le3\)

\(Max_A=3\Leftrightarrow3x+1=0\)

\(\Rightarrow x=\frac{-1}{3}\)

19 tháng 3 2022

(x+2)2 +x(x-1)<2x2+1
x2+4x+4+x2-x<2x2+1
3x+4<1
x< -1


 

NV
26 tháng 7 2021

Câu này em đã hỏi rồi

1.Tìm GTNN của Bthức : B= 4x2- 6x+1 : (x-2)2    với x ≠ 22. Tìm GTLN của Bthức: C= x2 + 4x - 14  : x2 -2x +1  với x≠ 1gi... - Hoc24

14 tháng 12 2017

\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)

\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)

\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)

\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)

\(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)

Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)

14 tháng 12 2017

Gọi k là một giá trị của A ta có: 

\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)

\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)

Ta cần tìm k để PT (*) có nghiệm 
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)

Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)

Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)

Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1

7 tháng 10 2021

1) \(P=-2x^2-12x=-2\left(x^2+6x+9\right)+18=-2\left(x+3\right)^2+18\le18\)

\(maxP=18\Leftrightarrow x=-3\)

2) \(Q=-5x^2+10x=-5\left(x^2-2x+1\right)+5=-5\left(x-1\right)^2+5\le5\)

\(maxQ=5\Leftrightarrow x=1\)

3) \(A=-3x^2+12x-6=-3\left(x^2-4x+4\right)+6=-3\left(x-2\right)^2+6\le6\)

\(maxA=6\Leftrightarrow x=2\)

4) \(B=-2x^2-24x+12=-2\left(x^2+12x+36\right)+84=-2\left(x+6\right)^2+84\le84\)

\(maxB=84\Leftrightarrow x=-6\)

NV
26 tháng 7 2021

1.

Đặt \(x-2=t\ne0\Rightarrow x=t+2\)

\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)

\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)

2.

Đặt \(x-1=t\ne0\Rightarrow x=t+1\)

\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)

\(C_{max}=2\) khi \(t=3\) hay \(x=4\)