K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

A= 2016+√(10-(x2​-2x3+32))

= 2016+√(10-(x-3)2)

Để A đạt Max <=> √(10-(x-3)2) Max

Lại có B= 10-(x-3)2 \(\le\)10 . Để B =10 <=> x=3

Vậy x= 3 thì A đạt Max = 2016+√10

Trả lời:

Vậy x = 3

~ Học tốt ~

19 tháng 10 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\frac{1-x}{\sqrt{2}}\right)^2\)

\(=\left[\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)

\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(x-1\right)^2}{2}\)

\(=\left[\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2}\)

\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}.\left(\sqrt{x}-1\right)}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)

b) Với \(0< x< 1\)\(\Rightarrow0< \sqrt{x}< 1\)

\(\Rightarrow\sqrt{x}-1< 0\)

mà \(\sqrt{x}>0\)\(\Rightarrow\sqrt{x}.\left(\sqrt{x}-1\right)< 0\)

\(\Rightarrow-\sqrt{x}.\left(\sqrt{x}-1\right)>0\)\(\Rightarrow P>0\)( đpcm )

c) \(P=-x+\sqrt{x}=-x+\sqrt{x}-\frac{1}{4}+\frac{1}{4}\)

\(=-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\)

\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\)\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\)\(\Leftrightarrow x=\frac{1}{4}\)( thỏa mãn ĐKXĐ )

Vậy \(maxP=\frac{1}{4}\)\(\Leftrightarrow x=\frac{1}{4}\)

19 tháng 10 2020

ĐKXĐ \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)

a,  Ta có \(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)

               \(P=\left(\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)

              \(P=\left(\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)

             \(P=\frac{2\sqrt{x}-2x}{\sqrt{2}}\)

             \(P=\sqrt{2x}-\sqrt{2}x\)

             \(P=\sqrt{2x}\left(1-\sqrt{x}\right)\)

b,        Vì \(0< x< 1\Rightarrow\sqrt{x}< 1\Rightarrow1-\sqrt{x}< 1\)

                 \(\Rightarrow\sqrt{2x}\left(1-\sqrt{x}\right)>0\)

 c,        Ta có \(P=-\sqrt{2}\left(x-\sqrt{x}\right)\)  

                      \(P=-\sqrt{2}\left(x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}-\frac{1}{4}\right)\)

                      \(P=-\sqrt{2x}\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{\sqrt{8}}\le\frac{1}{\sqrt{8}}\)

               Dấu = xảy ra \(\Leftrightarrow\)\(\sqrt{x}-\frac{1}{2}=0\)

                                      \(\Rightarrow x=\frac{1}{4}\)

             vậy GTLN của P là \(\frac{1}{\sqrt{8}}\)với x=\(\frac{1}{4}\)

28 tháng 8 2019
bh anh bảo nhá nhân chéo hai vế xem
28 tháng 8 2019

@hieu nguyen Em có nhân chéo hai vế và khai triển ra nhưng cũng không ra cái gì ạ. 

15 tháng 12 2020

Xét bất đẳng thức phụ: \(\frac{x}{x+1}\le\frac{9}{16}x+\frac{1}{16}\)(*)

(*)\(\Leftrightarrow\frac{-\left(3x-1\right)^2}{16\left(x+1\right)}\le0\)*đúng với mọi x > 0*

Áp dụng tương tự rồi cộng vế theo vế, ta được: \(A\le\frac{9}{16}\left(x+y+z\right)+\frac{3}{16}=\frac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

20 tháng 10 2016

Vì cái này là hàm đồng biến nên không cần dùng cosi hay bụng cũng có thể giải được nên mình mới thắc mắc thôi

Điều kiện xác định \(-2\le x\le2\)

Vì hàm này đồng biến nên (bạn tự chứng minh đồng biến nhé)

Nên A lớn nhất khi x lớn nhất hay A = 0 khi x = 2

A nhỏ nhất khi x nhỏ nhất hay A = \(-8-4\sqrt{6}\) khi x = -2

20 tháng 10 2016
Đề đúng không thế