K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

GTLN của Q = -1996/1997 <=> x = 0

GTLN của P = -1996/1997 <=> x = 0

k cho mk nha

5 tháng 3 2018

Ta có: |x| ≥ 0 ;\(\forall\)x

=> |x| + 1996≥ 1996 ;

=> \(\dfrac{|x|+1996}{-1997}\)\(\dfrac{-1996}{1997}\) ;\(\forall\)x

=> A \(\ge\) \(\dfrac{-1996}{1997}\)

Dấu = xảy ra <=> |x| =0

<=> x=0

Vậy GTLN của A là \(\dfrac{-1996}{1997}\) tại x = 0




5 tháng 3 2018

dòng thứ 3 và thứ 4 là dấu \(\le\) sr nha mk ghi nhầm

18 tháng 6 2017

1.\(\frac{1996}{\left|x\right|+1997}\)có GTLN \(\Leftrightarrow\left|x\right|+1997\)có GTNN.

Mà \(\left|x\right|+1997\ne0\)

Ta thấy: \(\left|x\right|\ge0\forall x\in R\Rightarrow\left|x\right|+1997\ge1997\)

\(\Rightarrow\left|x\right|=0\)thì \(\left|x\right|+1997\)có GTNN  là \(1997\)

\(\Rightarrow\)GTLN của \(\frac{1996}{\left|x\right|+1997}\)là \(\frac{1996}{1997}\)khi x=0

 2.\(\frac{\left|x\right|+1996}{-1997}=\frac{-\left(\left|x\right|+1996\right)}{1997}\)

\(\Rightarrow\left|x\right|+1996\)phải có GTNN thì \(\frac{\left|x\right|+1996}{-1997}\)đạt GTLN

Mà \(\left|x\right|\ge0\forall x\in R\Rightarrow x=0\)thì \(\left|x\right|+1996\)có GTNN là \(1996\)

Vậy GTLN của \(\frac{\left|x\right|+1996}{-1997}\)là \(\frac{1996}{-1997}\)khi x=0

18 tháng 2 2018

mình cùng có tên là Minh Thư đó

a: \(\left|x\right|+1996>=1996\)

\(\Leftrightarrow\dfrac{\left|x\right|+1996}{1997}\ge\dfrac{1996}{1997}\)

\(\Leftrightarrow A\le-\dfrac{1996}{1997}\)

Dấu '=' xảy ra khi x=0

b: \(\left|x\right|+1>=1\)

\(\Leftrightarrow\dfrac{1}{\left|x\right|+1}\le1\)

\(\Leftrightarrow B\ge-1\)

Dấu '=' xảy ra khi x=0

7 tháng 4 2023

ta có |x|≥0  => |x| +1996 ≥ 1996  

=> |x| +1996/-1997   ≤ 1996/-1997

=> A  ≤1996/-1997

=> GTLN A = 1996/-1997

dấu "=" xảy ra <=> x=0

vậy GTLN A =1996/-1997 <=> x=0

21 tháng 9 2023

\(A=\left|x+1\right|-3\\ min_A=-3.khi.x+1=0\Leftrightarrow x=-1\\ B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\\ max_B=-\dfrac{1}{4}.khi.\left(x-\dfrac{3}{7}\right)=0\Leftrightarrow x=\dfrac{3}{7}\)

22 tháng 9 2023

a)

A = |x + 1| - 3 ≥ 0 - 3 = -3

Dấu "=" xảy ra khi x + 1 = 0 hay x = -1

Do đó A đạt GTNN là -3 khi x = -1

b)

\(B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\le-0-\dfrac{1}{4}=-\dfrac{1}{4}\)

Dấu "=" xảy ra khi khi \(x-\dfrac{3}{7}=0\) hay \(x=\dfrac{3}{7}\)

Do đó B đạt GTLN là \(-\dfrac{1}{4}\) khi \(x=\dfrac{3}{7}\)

30 tháng 8 2023

\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)

vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)

\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)

Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)

30 tháng 8 2023

\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)

vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)

\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi

\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)

\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)

12 tháng 10 2021

\(a,B=4,2+\left|x+1,5\right|\ge4,2\\ B_{min}=4,2\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\\ b,C=\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\\ C_{max}=\dfrac{4}{5}\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)

12 tháng 10 2021

a, Do |x +1,5| ≥ 0 ⇒ 4,2 + |x + 1,5| ≥ 4,2

Dấu "=" xảy ra ⇔ x + 1,5 = 0 ⇔  x = - 1,5

Vậy Bmin=  4,2 ⇔ x= -1,5

b, Do |2x + 1| ≥ 0 ⇒ \(\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\)

Dấu "=" xảy ra ⇔ 2x + 1 = 0 ⇔ 2x = -1 ⇔ \(x=-\dfrac{1}{2}\)

Vậy Cmax \(\dfrac{4}{5}\Leftrightarrow x=-\dfrac{1}{2}\)