K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LA
1
AH
Akai Haruma
Giáo viên
25 tháng 8
Lời giải:
Điều kiện: $x\neq 0$
Nếu $x>0$ thì: $A=\frac{x+2}{|x|}=\frac{x+2}{x}=1+\frac{2}{x}$
$A$ lớn nhất khi $\frac{2}{x}$ lớn nhất
$\Rightarrow x$ là số nguyên dương nhỏ nhất
$\Rightarrow x=1$. Khi đó: $A_{\max}=\frac{1+2}{1}=3$
Nếu $x<0$ thì: $A=\frac{x+2}{|x|}=\frac{x+2}{-x}=-1+\frac{2}{-x}$
$A$ lớn nhất khi $\frac{2}{-x}$ lớn nhất
$\Rightarrow -x$ là số nguyên dương nhỏ nhất
$\Rightarrow -x=1\Rightarrow x=-1$
Khi đó: $A_{\max}=-1+\frac{2}{-(-1)}=-1+\frac{2}{1}=1$
Từ 2 TH trên suy ra $A_{\max}=3$ khi $x=1$
NA
0
NA
0
BH
0
TT
0
\(\dfrac{5}{x+2}\) ≤ 5
Max A=5 ⇔x+2=1
⇔x=-1